Skip to main content

Transformer-Based Contrastive Multi-view Clustering via Ensembles

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14169))

  • 3341 Accesses

Abstract

Multi-view spectral clustering has achieved considerable performance in practice because of its ability to explore nonlinear structure information. However, most existing methods belong to shallow models and are sensitive to the original similarity graphs. In this work, we proposed a novel model of Transformer-based contrastive multi-view clustering via ensembles (TCMCE) to solve the above issues. Our model integrates the self-attention mechanism, ensemble clustering, graph reconstruction, and contrastive learning into a unified framework. From the viewpoint of orthogonal and nonnegative graph reconstruction, TCMCE aims to learn a common spectral embedding as the indicator matrix. Then the graph contrastive learning is performed on the reconstructed graph based on the fusion graph via ensembles. Extensive experiments on six real-world datasets have verified the effectiveness of our model on multi-view clustering tasks compared with the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, J., Xie, X., Xu, X., Sun, S.: Multi-view learning overview: recent progress and new challenges. Inf. Fusion 38, 43–54 (2017)

    Article  Google Scholar 

  2. Kang, Y., Choi, S.: Restricted deep belief networks for multi-view learning. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 130–145. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_9

    Chapter  Google Scholar 

  3. Chao, G., Sun, S., Bi, J.: A survey on multiview clustering. IEEE Trans. Artif. Intell. 2(2), 146–168 (2021)

    Article  Google Scholar 

  4. Yan, X., Hu, S., Mao, Y., Ye, Y., Yu, H.: Deep multi-view learning methods: a review. Neurocomputing 448, 106–129 (2021)

    Article  Google Scholar 

  5. Wang, H., Yang, Y., Liu, B.: GMC: graph-based multi-view clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1116–1129 (2019)

    Article  Google Scholar 

  6. Nie, F., Cai, G., Li, J., Li, X.: Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans. Image Process. 27(3), 1501–1511 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nie, F., Ding, C., Luo, D., Huang, H.: Improved MinMax cut graph clustering with nonnegative relaxation. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 451–466. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15883-4_29

    Chapter  Google Scholar 

  8. Han, J., Xiong, K., Nie, F.: Orthogonal and nonnegative graph reconstruction for large scale clustering. In: IJCAI, pp. 1809–1815 (2017)

    Google Scholar 

  9. Hu, Z., Nie, F., Wang, R., Li, X.: Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding. Inf. Fusion 55, 251–259 (2020)

    Article  Google Scholar 

  10. Shi, S., Nie, F., Wang, R., Li, X.: Multi-view clustering via nonnegative and orthogonal graph reconstruction. IEEE Trans. Neural Netw. Learn. Syst. 34(1), 201–214 (2021)

    Article  Google Scholar 

  11. Zhao, M., Yang, W., Nie, F.: Auto-weighted orthogonal and nonnegative graph reconstruction for multi-view clustering. Inf. Sci. 632, 324–339 (2023)

    Article  Google Scholar 

  12. Yang, X., Deng, C., Dang, Z., Tao, D.: Deep multiview collaborative clustering. IEEE Trans. Neural Netw. Learn. Syst. 34(1), 516–526 (2021)

    Article  Google Scholar 

  13. Huang, Z., Zhou, J.T., Peng, X., Zhang, C., Zhu, H., Lv, J.: Multi-view spectral clustering network. In: IJCAI, pp. 2563–2569 (2019)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2016)

    Google Scholar 

  15. Fan, S., Wang, X., Shi, C., Lu, E., Lin, K., Wang, B.: One2Multi graph autoencoder for multi-view graph clustering. In: WWW, pp. 3070–3076 (2020)

    Google Scholar 

  16. Wang, Y., Chang, D., Fu, Z., Zhao, Y.: Consistent multiple graph embedding for multi-view clustering. IEEE Trans. Multimedia 24, 2461–2472 (2021)

    Google Scholar 

  17. Li, Z., et al.: Consensus graph learning for multi-view clustering. IEEE Trans. Multimedia 24, 2461–2472 (2021)

    Article  Google Scholar 

  18. Zhang, P., et al.: Consensus one-step multi-view subspace clustering. IEEE Trans. Knowl. Data Eng. 34(10), 4676–4689 (2020)

    Article  Google Scholar 

  19. Zhan, K., Niu, C., Chen, C., Nie, F., Zhang, C., Yang, Y.: Graph structure fusion for multiview clustering. IEEE Trans. Knowl. Data Eng. 31(10), 1984–1993 (2018)

    Article  Google Scholar 

  20. Ren, P., Xiao, Y., Xu, P.: Robust auto-weighted multi-view clustering. In: IJCAI, pp. 2644–2650 (2018)

    Google Scholar 

  21. De Martino, G., Pio, G., Ceci, M.: Multi-view overlapping clustering for the identification of the subject matter of legal judgments. Inf. Sci. 638, 118956 (2023)

    Article  Google Scholar 

  22. Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., Xu, Z.: Large-scale multi-view subspace clustering in linear time. In: AAAI, pp. 4412–4419 (2020)

    Google Scholar 

  23. Qiang, Q., Zhang, B., Wang, F., Nie, F.: Fast multi-view discrete clustering with anchor graphs. In: AAAI, pp. 9360–9367 (2021)

    Google Scholar 

  24. Liu, S., Wang, S., Zhang, P.: Efficient one-pass multi-view subspace clustering with consensus anchors. In: AAAI, vol. 36, no. 7, pp. 7576–7584 (2022)

    Google Scholar 

  25. Zhang, C., Liu, Y., Fu, H.: AE2-Nets: autoencoder in autoencoder networks. In: CVPR, pp. 2577–2585 (2019)

    Google Scholar 

  26. Zhou, R., Shen, Y.D.: End-to-end adversarial-attention network for multi-modal clustering. In: CVPR, pp. 14619–14628 (2020)

    Google Scholar 

  27. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J., Peng, X.: Contrastive clustering. In: AAAI, vol. 35, no. 10, pp. 8547–8555 (2021)

    Google Scholar 

  28. Trosten, D.J., Lokse, S., Jenssen, R., Kampffmeyer, M.: Reconsidering representation alignment for multi-view clustering. In: CVPR, pp. 1255–1265 (2021)

    Google Scholar 

  29. Lin, Y., Gou, Y., Liu, Z., Li, B., Lv, J., Peng, X.: Completer: incomplete multi-view clustering via contrastive prediction. In: CVPR, pp. 11174–11183 (2021)

    Google Scholar 

  30. Xu, J., Tang, H., Ren, Y., Peng, L., Zhu, X., He, L.: Multi-level feature learning for contrastive multi-view clustering. In: CVPR, pp. 16051–16060 (2022)

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  32. Pan, E., Kang, Z.: Multi-view contrastive graph clustering. In: NeurIPS, vol. 34, pp. 2148–2159 (2021)

    Google Scholar 

  33. Nie, F., Wang, X., Jordan, M., Huang, H.: The constrained Laplacian rank algorithm for graph-based clustering. In: AAAI (2016)

    Google Scholar 

  34. Cai, X., Nie, F., Huang, H., Kamangar, F.: Heterogeneous image feature integration via multi-modal spectral clustering. In: CVPR, pp. 1977–1984 (2011)

    Google Scholar 

  35. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20) (1996)

    Google Scholar 

  36. Mallah, C., Cope, J., Orwell, J.: Plant leaf classification using probabilistic integration of shape, texture and margin features. Signal Process. Pattern Recognit. Appl. 5(1), 45–54 (2013)

    Google Scholar 

  37. Wang, H., Yang, Y., Liu, B., Fujita, H.: A study of graph-based system for multi-view clustering. Knowl. Based Syst. 163, 1009–1019 (2019)

    Article  Google Scholar 

  38. Monadjemi, A., Thomas, B.T., Mirmehdi, M.: Experiments on high resolution images towards outdoor scene classification (2002)

    Google Scholar 

  39. Li, F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: CVPR Workshop, p. 178 (2004)

    Google Scholar 

  40. Wang, S., et al.: Fast parameter-free multi-view subspace clustering with consensus anchor guidance. IEEE Trans. Image Process. 31, 556–568 (2021)

    Article  Google Scholar 

  41. Huang, D., Wang, C.D., Lai, J.H.: Fast multi-view clustering via ensembles: towards scalability, superiority, and simplicity. IEEE Trans. Knowl. Data Eng. (2023)

    Google Scholar 

  42. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Yang .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

The authors declare that they have no conflict of interest. This article does not contain any studies involving human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, M., Yang, W., Nie, F. (2023). Transformer-Based Contrastive Multi-view Clustering via Ensembles. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics