Skip to main content

SpotGAN: A Reverse-Transformer GAN Generates Scaffold-Constrained Molecules with Property Optimization

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Generating molecules with a given scaffold is a challenging task in drug-discovery. Scaffolds impose strict constraints on the generation of molecules. Moreover, the order of the simplified molecular-input line-entry system (SMILES) strings changes substantially during sequence expansion. This study presents a scaffold-constrained, property-optimized transformer GAN (SpotGAN) to solve these issues. SpotGAN employs a decoration generator that fills decorations into a given scaffold using a transformer-decoder variant. The discriminator is a transformer-encoder variant with a global receptive field that improves the realism of the generated molecules. The chemical properties are optimized through reinforcement learning (RL), affording molecules with high property scores. Additionally, an extension of SpotGAN, called SpotWGAN, is proposed to optimize and stabilize the training process leveraging the Wasserstein distance and mini-batch discrimination. Experimental results show the usefulness of the proposed model on scaffold-constrained molecular-generation tasks in terms of the drug-likeness, solubility, synthesizability, and bioactivity of the generated molecules(\(^1\) Our code is available at: https://github.com/naruto7283/SpotGAN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Appendices are available at https://yamanishi.cs.i.nagoya-u.ac.jp/spotgan/.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Arús-Pous, J., et al.: Smiles-based deep generative scaffold decorator for de-novo drug design. J. Cheminformatics 12(1), 1–18 (2020)

    Article  Google Scholar 

  3. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantifying the chemical beauty of drugs. Nat. Chem. 4(2), 90–98 (2012)

    Article  Google Scholar 

  4. Comer, J., Tam, K.: Lipophilicity profiles: theory and measurement. Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical and Computational Strategies, pp. 275–304 (2001)

    Google Scholar 

  5. De Cao, N., Kipf, T.: Molgan: an implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018)

  6. Deore, A.B., Dhumane, J.R., Wagh, R., Sonawane, R.: The stages of drug discovery and development process. Asian J. Pharmaceutical Res. Develom. 7(6), 62–67 (2019)

    Article  Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Dollar, O., Joshi, N., Beck, D.A., Pfaendtner, J.: Giving attention to generative vae models for de novo molecular design. ChemRxiv (2021)

    Google Scholar 

  9. Donahue, C., Lee, M., Liang, P.: Enabling language models to fill in the blanks. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2492–2501 (2020)

    Google Scholar 

  10. Ertl, P., Schuffenhauer, A.: Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1(1), 1–11 (2009)

    Article  Google Scholar 

  11. Floridi, L., Chiriatti, M.: Gpt-3: its nature, scope, limits, and consequences. Mind. Mach. 30(4), 681–694 (2020)

    Article  Google Scholar 

  12. Gaulton, A., et al.: Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(D1), D1100–D1107 (2012)

    Article  Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  14. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-Guzik, A.: Objective-reinforced generative adversarial networks (organ) for sequence generation models. arXiv preprint arXiv:1705.10843 (2017)

  15. Gupta, A., et al.: Generative recurrent networks for de novo drug design. Mol. Inf. 37(1–2), 1700111 (2018)

    Article  Google Scholar 

  16. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: Zinc: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768 (2012)

    Article  Google Scholar 

  17. Jameel, A.G.A., et al.: A minimalist functional group (mfg) approach for surrogate fuel formulation. Combust. Flame 192, 250–271 (2018)

    Article  Google Scholar 

  18. Jiang, Y., Chang, S., Wang, Z.: Transgan: two pure transformers can make one strong gan, and that can scale up. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  19. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. In: International Conference on Machine Learning, pp. 2323–2332. PMLR (2018)

    Google Scholar 

  20. Kim, S., et al.: Pubchem substance and compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2016)

    Article  Google Scholar 

  21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  22. Klein, D., Trinajstic, N.: Hückel rules and electron correlation. J. Am. Chem. Soc. 106(26), 8050–8056 (1984)

    Article  Google Scholar 

  23. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: International Conference on Machine Learning, pp. 1945–1954. PMLR (2017)

    Google Scholar 

  24. Landrum, G.: Rdkit documentation. Release 1(1–79), 4 (2013)

    Google Scholar 

  25. Langevin, M., Minoux, H., Levesque, M., Bianciotto, M.: Scaffold-constrained molecular generation. J. Chem. Inf. Model. 60(12), 5637–5646 (2020)

    Article  Google Scholar 

  26. Lippe, P., Gavves, E.: Categorical normalizing flows via continuous transformations. arXiv preprint arXiv:2006.09790 (2020)

  27. Maziarz, K., et al.: Learning to extend molecular scaffolds with structural motifs. arXiv preprint arXiv:2103.03864 (2021)

  28. Morgan, H.L.: The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J. Chem. Doc. 5(2), 107–113 (1965)

    Article  Google Scholar 

  29. Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9(1), 1–14 (2017)

    Article  Google Scholar 

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Ramakrishnan, R., Dral, P.O., Rupp, M., Von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data 1(1), 1–7 (2014)

    Article  Google Scholar 

  32. Rogers, D.J., Tanimoto, T.T.: A computer program for classifying plants. Science 132(3434), 1115–1118 (1960)

    Article  Google Scholar 

  33. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems 29 (2016)

    Google Scholar 

  34. Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., Tang, J.: Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382 (2020)

  35. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems 12 (1999)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  37. Weininger, D.: Smiles, a chemical language and information system 1. introduction to methodology and encoding rules. J. Chem. Inform. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  38. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative adversarial nets with policy gradient. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 2852–2858 (2017)

    Google Scholar 

  39. Zang, C., Wang, F.: Moflow: an invertible flow model for generating molecular graphs. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 617–626 (2020)

    Google Scholar 

  40. Zhao, H., Akritopoulou-Zanze, I.: When analoging is not enough: scaffold discovery in medicinal chemistry. Expert Opin. Drug Discov. 5(2), 123–134 (2010)

    Article  Google Scholar 

  41. Zhu, W., Hu, Z., Xing, E.: Text infilling. arXiv preprint arXiv:1901.00158 (2019)

Download references

Acknowledgements

This research was supported by the International Research Fellow of Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research in Japan [Standard]), AMED under Grant Number JP21nk0101111, and JSPS KAKENHI [grant number 20H05797]. The authors are grateful to Dr. Kazuma Kaitoh for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Yamanishi, Y. (2023). SpotGAN: A Reverse-Transformer GAN Generates Scaffold-Constrained Molecules with Property Optimization. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics