Skip to main content

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14093))

Included in the following conference series:

Abstract

We prove that every 4-dicritical oriented graph on n vertices has at least \((\frac{10}{3}+\frac{1}{51})n-1\) arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboulker, P., Bellitto, T., Havet, F., Rambaud, C.: On the minimum number of arcs in \(k\)-dicritical oriented graphs. arXiv preprint arXiv:2207.01051 (2022)

  2. Aboulker, P., Vermande, Q.: Various bounds on the minimum number of arcs in a \( k \)-dicritical digraph. arXiv preprint arXiv:2208.02112 (2022)

  3. Dirac, G.A.: A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proc. London Math. Soc. 3(1), 161–195 (1957)

    Google Scholar 

  4. Dirac, G.A.: On the structure of 5-and 6-chromatic abstract graphs. J. für die reine und angew. Math. (Crelles J.) 1964(214–215), 43–52 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, W., Postle, L.: On the minimal edge density of \({K}_4\)-free 6-critical graphs. arXiv:1811.02940 [math] (2018)

  6. Gould, R.J., Larsen, V., Postle, L.: Structure in sparse k-critical graphs. J. Comb. Theory Ser. B 156, 194–222 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harutyunyan, A., Mohar, B.: Gallai’s theorem for list coloring of digraphs. SIAM J. Discret. Math. 25(1), 170–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Havet, F., Picasarri-Arrieta, L., Rambaud, C.: On the minimum number of arcs in \(4 \)-dicritical oriented graphs. arXiv preprint arXiv:2306.10784 (2023)

  9. Kostochka, A., Stiebitz, M.: On the number of edges in colour-critical graphs and hypergraphs. Combinatorica 20(4), 521–530 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kostochka, A., Stiebitz, M.: The minimum number of edges in 4-critical digraphs of given order. Graphs Comb. 36(3), 703–718 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kostochka, A., Yancey, M.: Ore’s conjecture on color-critical graphs is almost true. J. Comb. Theory, Ser. B 109, 73–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kostochka, A., Yancey, M.: A Brooks-type result for sparse critical graphs. Combinatorica 38(4), 887–934 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Postle, L.: On the minimum number of edges in triangle-free 5-critical graphs. Eur. J. Comb. 66, 264–280 (2017). selected papers of EuroComb15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Picasarri-Arrieta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Havet, F., Picasarri-Arrieta, L., Rambaud, C. (2023). On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics