Skip to main content

Digital Markers of Mental Health Problems: Phenotyping Across Biological, Psychological, and Environmental Dimensions

  • Chapter
  • First Online:
Biomarkers in Neuropsychiatry

Abstract

Digital markers of mental health problems have gained attention in research as a result of the growing accessibility and data-generating capabilities of portable digital devices. Through sensors (e.g., geolocating system) and human-device interactions (e.g., keystrokes), smartphones and wearable devices can be used to generate digital indices that aim to capture a person’s mental health states and mental health determinants across biological, psychological, and environmental dimensions. Important advantages of digital (bio)markers include the potential to measure mental health on a day-to-day basis and in the person’s usual environment (rather than in the clinician’s office) and with minimal intervention required from the user. Digital markers can be combined with survey data and other variables as part of tailored predictive models with the aim of helping patients and clinicians better detect, monitor, and manage mental health conditions. In this chapter, we define digital markers in psychiatry and examine their types and applications using examples drawn from the scientific literature. We also consider some of the limitations of existing research, ethical problems, and other barriers to the implementation of digital phenotyping in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Digital around the world—DataReportal – global digital insights [Internet]. [cited 2022 Nov 25]. Available from: https://datareportal.com/global-digital-overview

  2. Vasudevan S, Saha A, Tarver ME, Patel B. Digital biomarkers: convergence of digital health technologies and biomarkers. NPJ Digit Med. 2022;5(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Montag C, Elhai JD, Dagum P. On blurry boundaries when defining digital biomarkers: how much biology needs to be in a digital biomarker? Front Psych. 2021;12:740292.

    Article  Google Scholar 

  4. Erdmier C, Hatcher J, Lee M. Wearable device implications in the healthcare industry. J Med Eng Technol. 2016;40(4):141–8.

    Article  PubMed  Google Scholar 

  5. Segura Anaya LH, Alsadoon A, Costadopoulos N, Prasad PWC. Ethical implications of user perceptions of wearable devices. Sci Eng Ethics. 2018;24(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  6. Peng C, Xi N, Hong Z, Hamari J. acceptance of wearable technology: A meta-analysis. In 2022 [cited 2022 Nov 9]. Available from: http://hdl.handle.net/10125/79958

  7. Lee MK, Rich K. Who Is Included in Human Perceptions of AI?: Trust and Perceived Fairness around Healthcare AI and Cultural Mistrust. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Yokohama: ACM; 2021. [cited 2022 Nov 28]. p. 1–14. Available from: https://dl.acm.org/doi/10.1145/3411764.3445570.

    Google Scholar 

  8. Robinson L, Schulz J, Blank G, Ragnedda M, Ono H, Hogan B, et al. Digital inequalities 2.0: legacy inequalities in the information age. First Monday. 2020;25(7) [cited 2023 Feb 5] Available from: https://ora.ox.ac.uk/objects/uuid:ac36d8d5-cd59-4871-ab30-7925b6714243

  9. Estes B. Geolocation—the risk and benefits of a trending technology. Schaumburg: ISACA; 2016. [cited 2023 Feb 5]. Available from: https://www.isaca.org/resources/isaca-journal/issues/2016/volume-5/geolocationthe-risk-and-benefits-of-a-trending-technology

    Google Scholar 

  10. Fraccaro P, Beukenhorst A, Sperrin M, Harper S, Palmier-Claus J, Lewis S, et al. Digital biomarkers from geolocation data in bipolar disorder and schizophrenia: a systematic review. J Am Med Inform Assoc. 2019;26(11):1412–20.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boukhechba M, Huang Y, Chow P, Fua K, Teachman BA, Barnes LE. Monitoring social anxiety from mobility and communication patterns. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers. Maui, ACM; 2017. p. 749–53. [cited 2022 Jun 11]. Available from: https://dl.acm.org/doi/10.1145/3123024.3125607.

  12. Ranjan T, Melcher J, Keshavan M, Smith M, Torous J. Longitudinal symptom changes and association with home time in people with schizophrenia: An observational digital phenotyping study. Schizophr Res. 2022;243:64–9.

    Article  PubMed  Google Scholar 

  13. Tazawa Y, Wada M, Mitsukura Y, Takamiya A, Kitazawa M, Yoshimura M, et al. Actigraphy for evaluation of mood disorders: a systematic review and meta-analysis. J Affect Disord. 2019;253:257–69.

    Article  PubMed  Google Scholar 

  14. Walther S, Horn H, Koschorke P, Müller TJ, Strik W. Increased motor activity in cycloid psychosis compared to schizophrenia. World J Biol Psychiatry. 2009;10(4 Pt 3):746–51.

    Article  PubMed  Google Scholar 

  15. Tahmasian M, Khazaie H, Golshani S, Avis KT. Clinical application of actigraphy in psychotic disorders: a systematic review. Curr Psychiatry Rep. 2013;15(6):359.

    Article  PubMed  Google Scholar 

  16. Tseng VWS, Sano A, Ben-Zeev D, Brian R, Campbell AT, Hauser M, et al. Using behavioral rhythms and multi-task learning to predict fine-grained symptoms of schizophrenia. Sci Rep. 2020;10(1):15100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robin J, Harrison JE, Kaufman LD, Rudzicz F, Simpson W, Yancheva M. Evaluation of speech-based digital biomarkers: review and recommendations. Digit Biomark. 2020;4(3):99–108.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen AS, Rodriguez Z, Warren KK, Cowan T, Masucci MD, Edvard Granrud O, et al. Natural language processing and psychosis: on the need for comprehensive psychometric evaluation. Schizophr Bull. 2022;23:sbac051.

    Google Scholar 

  19. Diniz EJS, Fontenele JE, de Oliveira AC, Bastos VH, Teixeira S, Rabêlo RL, et al. Boamente: a natural language processing-based digital phenotyping tool for smart monitoring of suicidal ideation. Healthcare. 2022 Apr 8;10(4):698.

    Article  PubMed Central  Google Scholar 

  20. Lui GY, Loughnane D, Polley C, Jayarathna T, Breen PP. The apple watch for monitoring mental health–related physiological symptoms: literature review. JMIR Ment Health. 2022;9(9):e37354.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Apple Watch sets new US record, now owned by 30% of iPhone users [Internet]. AppleInsider. [cited 2023 Feb 5]. Available from: https://appleinsider.com/articles/22/10/14/apple-watch-sets-new-us-record-now-owned-by-30-of-iphone-users

  22. Hexoskin. Hexoskin smart shirts – cardiac, respiratory, sleep & activity metrics. Hexoskin. [cited 2023 Feb 5]. Available from: https://www.hexoskin.com/

  23. Khundaqji H, Hing W, Furness J, Climstein M. Smart shirts for monitoring physiological parameters: scoping review. JMIR Mhealth Uhealth. 2020 May 27;8(5):e18092.

    Article  PubMed  Google Scholar 

  24. Batra S, Baker RA, Wang T, Forma F, DiBiasi F, Peters-Strickland T. Digital health technology for use in patients with serious mental illness: a systematic review of the literature. Med Devices Auckl NZ. 2017;10:237–51.

    Google Scholar 

  25. Zulueta J, Piscitello A, Rasic M, Easter R, Babu P, Langenecker SA, et al. Predicting mood disturbance severity with Mobile phone keystroke metadata: a BiAffect digital phenotyping study. J Med Internet Res. 2018;20(7):e9775.

    Article  Google Scholar 

  26. Hobbs KW, Monette PJ, Owoyemi P, Beard C, Rauch SL, Ressler KJ, et al. Incorporating information from electronic and social media into psychiatric and psychotherapeutic patient care: survey among clinicians. J Med Internet Res. 2019;21(7):e13218.

    Article  PubMed Central  Google Scholar 

  27. Paquin V, Ferrari M, Sekhon H, Rej S. Time to think “meta”: a critical viewpoint on the risks and benefits of virtual worlds for mental health. JMIR Serious Games. 2023;11:e43388.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Martinez BK, Baker WL, Konopka A, Giannelli D, Coleman CI, Kluger J, et al. Systematic review and meta-analysis of catheter ablation of ventricular tachycardia in ischemic heart disease. Heart Rhythm. 2020;17(1):e206–19.

    Article  PubMed  Google Scholar 

  29. Motahari-Nezhad H, Fgaier M, Abid MM, Péntek M, Gulácsi L, Zrubka Z. Digital biomarker–based studies: scoping review of systematic reviews. JMIR Mhealth Uhealth. 2022;10(10):e35722.

    Article  PubMed  PubMed Central  Google Scholar 

  30. O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond. Psychiatry Edgmont. 2006;3(5):54–63.

    PubMed  PubMed Central  Google Scholar 

  31. Scholten K, Meng E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int J Pharm. 2018;544(2):319–34.

    Article  CAS  PubMed  Google Scholar 

  32. Litvinova O, Klager E, Tzvetkov NT, Kimberger O, Kletecka-Pulker M, Willschke H, et al. Digital pills with ingestible sensors: patent landscape analysis. Pharm Basel Switz. 2022;15(8):1025.

    Google Scholar 

  33. Nadeau P, El-Damak D, Glettig D, Kong YL, Mo S, Cleveland C, et al. Prolonged energy harvesting for ingestible devices. Nat Biomed Eng. 2017;1:0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berglund J. Technology You can swallow: moving beyond wearable sensors, researchers are creating ingestible ones. IEEE Pulse. 2018;9(1):15–8.

    Article  PubMed  Google Scholar 

  35. DiCarlo L, Moon G, Intondi A, Duck R, Frank J, Hafazi H, et al. A digital health solution for using and managing medications: wirelessly observed therapy. IEEE Pulse. 2012;3(5):23–6.

    Article  PubMed  Google Scholar 

  36. Abramson A, Dellal D, Kong YL, Zhou J, Gao Y, Collins J, et al. Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Sci Adv. 2020;6(35):eaaz0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bettinger CJ. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol. 2015;33(10):575–85.

    Article  CAS  Google Scholar 

  38. Bettinger CJ. Advances in materials and structures for ingestible electromechanical medical devices. Angew Chem Int Ed Engl. 2018;57(52):16946–58.

    Article  CAS  PubMed  Google Scholar 

  39. Yang SY, Sencadas V, You SS, Jia NZX, Srinivasan SS, Huang HW, et al. Powering implantable and ingestible electronics. Adv Funct Mater. 2021;31(44):2009289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walther S, Ramseyer F, Horn H, Strik W, Tschacher W. Less structured movement patterns predict severity of positive syndrome, excitement, and disorganization. Schizophr Bull. 2014;40(3):585–91.

    Article  PubMed  Google Scholar 

  41. De Angel V, Lewis S, White K, Oetzmann C, Leightley D, Oprea E, et al. Digital health tools for the passive monitoring of depression: a systematic review of methods. Npj Digit Med. 2022;5(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mohr DC, Zhang M, Schueller SM. Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu Rev Clin Psychol. 2017;13(1):23–47.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Onnela JP. Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacology. 2021;46(1):45–54.

    Article  Google Scholar 

  44. Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela JP. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology. 2018;43(8):1660–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vaidyam A, Roux S, Torous J. Patient innovation in investigating the effects of environmental pollution in schizophrenia: case report of digital phenotyping beyond apps. JMIR Ment Health. 2020;7(8):e19778.

    Article  PubMed Central  Google Scholar 

  46. Pedersen J, Rasmussen MGB, Sørensen SO, Mortensen SR, Olesen LG, Brønd JC, et al. Effects of limiting recreational screen media use on physical activity and sleep in families with children: a cluster randomized clinical trial. JAMA Pediatr. 2022;176(8):741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuosmanen E, Wolling F, Vega J, Kan V, Nishiyama Y, Harper S, et al. Smartphone-based monitoring of Parkinson disease: quasi-experimental study to quantify hand tremor severity and medication effectiveness. JMIR Mhealth Uhealth. 2020;8(11):e21543.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, et al. Just-in-time adaptive interventions (JITAIs) in Mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2018;52(6):446–62.

    Article  PubMed  Google Scholar 

  49. Spruijt-Metz D, Wen CKF, O’Reilly G, Li M, Lee S, Emken BA, et al. Innovations in the use of interactive technology to support weight management. Curr Obes Rep. 2015;4(4):510–9.

    Article  CAS  PubMed Central  Google Scholar 

  50. Perski O, Hébert ET, Naughton F, Hekler EB, Brown J, Businelle MS. Technology-mediated just-in-time adaptive interventions (JITAIs) to reduce harmful substance use: a systematic review. Addiction. 2022;117(5):1220–41.

    Article  PubMed  Google Scholar 

  51. Götzl C, Hiller S, Rauschenberg C, Schick A, Fechtelpeter J, Fischer Abaigar U, et al. Artificial intelligence-informed mobile mental health apps for young people: a mixed-methods approach on users’ and stakeholders’ perspectives. Child Adolesc Psychiatry Ment Health. 2022;16(1):86.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Saha K, Yousuf A, Boyd RL, Pennebaker JW, De Choudhury M. Social media discussions predict mental health consultations on college campuses. Sci Rep. 2022;12(1):123.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gauld C, Maquet J, Micoulaud-Franchi JA, Dumas G. Popular and scientific discourse on autism: representational cross-cultural analysis of epistemic communities to inform policy and practice. J Med Internet Res. 2022;24(6):e32912.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang Z, Xiong H, Zhang J, Yang S, Boukhechba M, Zhang D, et al. From personalized medicine to population health: a survey of mHealth sensing techniques. IEEE Internet Things J. 2022;9:1–1.

    Google Scholar 

  55. Merikangas KR, Swendsen J, Hickie IB, Cui L, Shou H, Merikangas AK, et al. Real-time Mobile monitoring of the dynamic associations among motor activity, energy, mood, and sleep in adults with bipolar disorder. JAMA Psychiatry. 2019;76(2):190–8.

    Article  PubMed  Google Scholar 

  56. Vuorre M, Johannes N, Magnusson K, Przybylski AK. Time spent playing video games is unlikely to impact well-being. R Soc Open Sci. 2022;9(7):220411.

    Article  PubMed  Google Scholar 

  57. Foong HF, Kyaw BM, Upton Z, Tudor CL. Facilitators and barriers of using digital technology for the management of diabetic foot ulcers: a qualitative systematic review. Int Wound J. 2020;17(5):1266–81.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kao CK, Liebovitz DM. Consumer Mobile health apps: current state, barriers, and future directions. PM&R. 2017;9(5S):S106–15.

    Article  Google Scholar 

  59. Whitelaw S, Pellegrini DM, Mamas MA, Cowie M, Van Spall HGC. Barriers and facilitators of the uptake of digital health technology in cardiovascular care: a systematic scoping review. Eur Heart J Digit Health. 2021;2(1):62–74.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Adler DA, Wang F, Mohr DC, Estrin D, Livesey C, Choudhury T. A call for open data to develop mental health digital biomarkers. BJPsych Open. 2022;8(2) Available from: https://www.cambridge.org/core/journals/bjpsych-open/article/call-for-open-data-to-develop-mental-health-digital-biomarkers/E672D16F88386583E50BE128A158F972

  61. Davidson BI. The crossroads of digital phenotyping. Gen Hosp Psychiatry. 2022;74:126–32.

    Article  PubMed  Google Scholar 

  62. Vandenbroucke JP, von EE, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Ann Intern Med. 2007;147(8):W-163.

    Article  Google Scholar 

  63. Barnett I, Torous J, Reeder HT, Baker J, Onnela JP. Determining sample size and length of follow-up for smartphone-based digital phenotyping studies. J Am Med Inform Assoc. 2020;27(12):1844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kiang MV, Chen JT, Krieger N, Buckee CO, Alexander MJ, Baker JT, et al. Sociodemographic characteristics of missing data in digital phenotyping. Sci Rep. 2021;11(1):15408.

    Article  CAS  Google Scholar 

  65. Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, et al. Promoting an open research culture. Science. 2015;348(6242):1422–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Colvonen PJ, DeYoung PN, Bosompra NOA, Owens RL. Limiting racial disparities and bias for wearable devices in health science research. Sleep. 2020;43(10):zsaa159.

    Article  PubMed  Google Scholar 

  67. Trott M, Driscoll R, Iraldo E, Pardhan S. Changes and correlates of screen time in adults and children during the COVID-19 pandemic: a systematic review and meta-analysis. eClinicalMedicine. 2022;48:101452.

    Article  PubMed  Google Scholar 

  68. Martinez-Martin N, Insel TR, Dagum P, Greely HT, Cho MK. Data mining for health: staking out the ethical territory of digital phenotyping. Npj Digit Med. 2018;1(1):1–5.

    Article  Google Scholar 

  69. Gómez-Carrillo A, Paquin V, Dumas G, Kirmayer LJ. Restoring the missing person to personalized medicine and precision psychiatry. Front Neurosci. 2023;17. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2023.1041433

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie Caroline Bodenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bodenstein, K.C. et al. (2023). Digital Markers of Mental Health Problems: Phenotyping Across Biological, Psychological, and Environmental Dimensions. In: Teixeira, A.L., Rocha, N.P., Berk, M. (eds) Biomarkers in Neuropsychiatry. Springer, Cham. https://doi.org/10.1007/978-3-031-43356-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43356-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43355-9

  • Online ISBN: 978-3-031-43356-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics