Skip to main content

Laser Assisted Diagnostics

  • Chapter
  • First Online:
Lasers in Dentistry—Current Concepts

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

  • 243 Accesses

Abstract

An objective and accurate diagnosis is an essential and key component in the formulation of safe, comprehensive management, and treatment of dental patients. The framework of such diagnosis should be based on clear criteria, applied with sound diagnostic methodologies which can assess, grade, and detect the presenting symptoms of any individual case. Various diagnostic approaches therefore play an essential part in developing a provisional and final diagnosis, from which treatment modalities and strategy can then be planned and implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stokes GG. On the change of refrangibility of light. Phil Trans R Soc Lond. 1852;142:463–562.

    Google Scholar 

  2. Raman CV. A new radiation. Indian J Phys. 1928;2:387–98.

    Google Scholar 

  3. Raman CV. A new radiation. Indian J Phys. 1928;2:399–419.

    Google Scholar 

  4. Letokhov VS. Laser-induced chemistry. Nature. 1983;305:103–8.

    Article  Google Scholar 

  5. Blank M. Biological effects of electromagnetic fields. Bioelectrochem Bioenerg. 1993;32:203–10.

    Article  Google Scholar 

  6. Lakhovsky G. The secret of life: electricity, radiation and your body. Costa Mesa: Noontide Press; 1992, 214 p.

    Google Scholar 

  7. Warnke U. Influence of light on cellular respiration. In: Popp F-A, et al., editors. Electromagnetic bio-information. Munchen: Urban & Schwarzenberg; 1989. p. 213–20.

    Google Scholar 

  8. Pohl RW. Optik und atomphysik. Springer Verlag; 1976.

    Book  Google Scholar 

  9. Ditchburn RW. Light. New York: Dover Publications; 1961. p. 407–8.

    Google Scholar 

  10. Waynant RW. Lasers in medicine. Boca Raton: CRC Press; 2011.

    Book  Google Scholar 

  11. Arnat A, et al. J Photochem Photobiol B Biol. 2006;82:152–60.

    Google Scholar 

  12. Grant EH, Sheppard RJ, South GP. Dielectric behaviour of biological molecules in solution. Oxford: Clarendon Press; 1978, Chapter I.

    Google Scholar 

  13. Quaglino D, Capri M, Zecca L, Franceschi C, Ronchetti IP. The effect on rat thymocytes of the simultaneous in vivo exposure to 50-Hz electric and magnetic field and to continuous light. Sci World J. 2004;4(Suppl 2):91–9.

    Article  Google Scholar 

  14. Niemz MH. Laser-tissue interactions fundamentals and applications. 3rd ed. Springer; 2007. p. 47–9.

    Book  Google Scholar 

  15. Foote CS. Mechanisms of photosensitized oxidation. Science. 1968;162:963–70.

    Article  Google Scholar 

  16. Lichtman JW, Conchello JW. Fluorescence microscopy. Nat Methods. 2005;2(12):910.

    Article  PubMed  Google Scholar 

  17. Koenig K, Schneckenburger H. Laser-induced autofluorescence for medical diagnosis. J Fluoresc. 1994;4(1):17.

    Article  Google Scholar 

  18. Chance B, et al. Intracellular oxidation-reduction states in vivo. Science. 1962;137:499–508.

    Article  PubMed  Google Scholar 

  19. Chance B, Jobsis FF. Changes in fluorescence in a frog sartorius muscle following a twitch. Nature. 1959;184:195–6.

    Article  Google Scholar 

  20. Mayevski A. Microcirculation in circulatory disorders. In: Microcirculatory and ionic responses to ischemia in the Mongolian Gerbil. Springer; 1998. p. 273–6.

    Google Scholar 

  21. Mayevsky A, Nioka S, Chance B. Fiber optic surface fluorometry/reflectometry and 31-p-NMR for monitoring the intracellular energy state in vivo. Adv Exp Med Biol. 1988;222:365–74.

    Article  Google Scholar 

  22. Lohmann W, Paul E. In situ detection of melanomas by fluorescence measurements. Naturwissenschaften. 1988;75:201–2.

    Article  Google Scholar 

  23. Lohmann W, Mussmann J, Lohmann C, Künzel W. Native fluorescence of the cervix uteri as a marker for dysplasia and invasive carcinoma. Eur J Obstet Gynecol Reprod Biol. 1989;31:249–53.

    Article  Google Scholar 

  24. Lohmann W, Hirzinger B, Braun J, Schwemmle K, Muhrer K-H, Schulz A. Fluorescence studies on lung tumors. Z Naturforsch. 1990;45c:1063–6.

    Article  Google Scholar 

  25. Ra H, et al. Detection of non-melanoma skin cancer by in vivo fluorescence imaging with fluorocoxib A. Neoplasia. 2015;17(2):201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res. 2008;14(8):2396–404. https://doi.org/10.1158/1078-0432.CCR-07-1609.

    Article  PubMed Central  Google Scholar 

  27. Arifler D, Pavlova I, Gillenwater A, Richards-Kortum R. Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophys J. 2007;92:3260–74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pavlova I. Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue applications for diagnosis of oral precancer. J Biomed Opt. 2008;13(6):064012. https://doi.org/10.1117/1.3006066.

    Article  PubMed  Google Scholar 

  29. Pavlova I, Sokolov K, Drezek R, Malpica A, Follen M, Richards-Kortum R. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy. Photochem Photobiol. 2003;77(5):550–5.

    Article  PubMed  Google Scholar 

  30. Roblyer D, Kurachi C, Stepanek V, Williams MD, El-Naggar AK, Lee JJ, Gillenwater AM, Richards-Kortum R. Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev Res (Phila). 2009;2(5):423–31. Published online 2009 Apr 28. https://doi.org/10.1158/1940-6207.CAPR-08-0229.

    Article  PubMed  Google Scholar 

  31. Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol. 2010;6(7):1143–54. https://doi.org/10.2217/fon.10.79.

    Article  Google Scholar 

  32. Lane PM, Gilhuly T, Whitehead P, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11(2):024006.

    Article  PubMed  Google Scholar 

  33. Poh CF, Ng SP, Williams PM, et al. Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head Neck. 2007;29(1):71–6.

    Article  PubMed  Google Scholar 

  34. Poh CF, MacAulay CE, Zhang L, Rosin MP. Tracing the “at-risk” oral mucosa field with autofluorescence: steps toward clinical impact. Cancer Prev Res. 2009;2(5):401–4.

    Article  Google Scholar 

  35. McNamara KK, Martin BD, Evans EW, Kalmar JR. The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:636–43.

    Article  Google Scholar 

  36. Balasubramaniam AM, Sriraman R, Sindhuja P, Mohideen K, Parameswar RA, Haris KTM. Autofluorescence based diagnostic techniques for oral cancer. J Pharm Bioallied Sci. 2015;7(Suppl 2):S374–7. https://doi.org/10.4103/0975-7406.163456.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yuanlong Y, Yanming Y, Fuming L, Yufen L, Paozhong M. Characteristic autofluorescence for cancer diagnosis and its origin. Lasers Surg Med. 1987;7(6):528–32.

    Article  Google Scholar 

  38. Koenig K, Hemmer J, Schneckenburger H. In: Spinelli P, DalFante M, Marchesini R, editors. Photodynamic therapy and biomedical lasers. Amsterdam: Elsevier; 1992. p. 903–6.

    Google Scholar 

  39. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed Central  Google Scholar 

  40. Wessels R, De Bruin DM, Faber DJ, Van Leeuwen TG, Van Beurden M, Ruers TJM. Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med Sci. 2014;29:1297–305.

    Google Scholar 

  41. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt. 2004;9(2):292–8.

    Article  PubMed  Google Scholar 

  42. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol. 2006;55(3):408–12.

    Article  PubMed  Google Scholar 

  43. Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K, Stucker M, Altmeyer P, Bechara FG. In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci. 2007;45(3):167–73.

    Article  PubMed  Google Scholar 

  44. Mogensen M, Nurnberg BM, Forman JL, Thomsen JB, Thrane L, Jemec GB. In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br J Dermatol. 2009;160(5):1026–33.

    Article  PubMed  Google Scholar 

  45. Mogensen M, Joergensen TM, Nurnberg BM, Morsy HA, Thomsen JB, Thrane L, Jemec GB. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg. 2009;35(6):965–72.

    Article  PubMed  Google Scholar 

  46. de Giorgi SM, Massi D, Mavilia L, Cappugi P, Carli P. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol. 2005;14(1):56–9.

    Article  Google Scholar 

  47. Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R, Moussa G, Stucker M, Altmeyer P, Hoffmann K. Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol. 2007;57(4):629–37.

    Article  PubMed  Google Scholar 

  48. Adegun OK, Tomlins PH, Hagi-Pavli E, Mckenzie G, Piper K, Bader DL, Fortune F. Quantitative analysis of optical coherence tomography and histopathology images of normal and dysplastic oral mucosal tissues. Lasers Med Sci. 2012;27:795–804. https://doi.org/10.1007/s10103-011-0975-1.

    Article  PubMed  Google Scholar 

  49. Adegun OK, Tomlins PH, Hagi-Pavli E, Mckenzie G, Piper K, Bader DL, Fortune F. Quantitative optical coherence tomography of fluid-filled oral mucosal lesions. Lasers Med Sci. 2013;28:1249–55. https://doi.org/10.1007/s10103-012-1208-y.

    Article  Google Scholar 

  50. Masterrs BR, So PTC, Gratton E. Optical biopsy of in vivo human skin : multiphoton excitation microscopy. Lasers Med Sci. 1998;13:196–203.

    Article  Google Scholar 

  51. Skoog DA, Holler FJ, Nieman TA. Principles of instrumental analysis. Saunders College Pub.; 1998.

    Google Scholar 

  52. Helmenstine AM. Analytical chemistry definition. http://chemistry.about.com/od/chemistryglossary/a/analyticaldef.htm. Accessed Feb 2023.

  53. Kumar A, Yueh FY, Singh JP, Burgess S. Characterization of malignant tissue cells by laser-induced breakdown spectroscopy. Appl Opt. 2004;43:5399–403.

    Article  PubMed  Google Scholar 

  54. Kanawade R, Mahari F, Klampfl F, Rohde M, Knipfer C, Tangermann-Gerk K, Adler W, Schmidt M, Stelzle F. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems. J Biophotonics. 2015;8(1–2):153–61.

    Article  PubMed  Google Scholar 

  55. Kramida A, Ralchenko Y, Reader J. NIST atomic spectra database (ver. 5.0). Gaithersburg, MD: National Institute of Standards and Technology; 2012. http://physics.nist.gov/asd.

    Google Scholar 

  56. Beier BD, Quivey RG, Berger AJ. Raman microspectroscopy for species identification and mapping within bacterial biofilms. AMB Express. 2012;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Berger AJ, Zhu Q, Quivey RG. Raman spectroscopy of oral bacteria. In: European conference on biomedical optics, Munich, Germany, 22 Jun 2003.

    Google Scholar 

  58. Zhu Q, Quivey RG Jr, Berger AJ. Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy. J Biomed Optic. 2004;9(6):1182–6.

    Article  Google Scholar 

  59. Zhu Q, Quivey RG Jr, Berger AJ. Raman spectroscopic measurement of relative concentrations in mixtures of oral bacteria. Appl Spectrosc. 2007;61:1233–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Maquelin K, Choo-Smith L-P, Endtz HP, Bruining HA, Puppels GJ. Rapid identification of Candida species by confocal Raman microspectroscopy. J Clin Microbiol. 2002;40(2):594–600.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Puppels GJ, Demul FFM, Otto C, Greve J, Robertnicoud M, et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature V. 1990;347:301–3.

    Article  Google Scholar 

  62. Puppels GJ, Colier W, Olminkhof JHF, Otto C, Demul FFM, et al. Description and performance of a highly sensitive confocal Raman microspectrometer. J Raman Spectrosc V. 1991;22:217–25.

    Article  Google Scholar 

  63. Puppels GJ, Olminkhof JHF, Segersnolten GMJ, Otto C, Demul FM, et al. Laser irradiation and Raman spectroscopy of single living cells and chromosomes—sample degradation occurs with 514.5nm but not with 660nm laser light. Exp Cell Res. 1991;V195:361–7.

    Article  Google Scholar 

  64. Nelson WH, Manoharan R, Sperry JF. Appl Spectrosc Rev. 1992;27:67–124.

    Article  Google Scholar 

  65. Manoharan R, Ghiamati E, Britton KA, Nelson WH, Sperry JF. Appl Spectrosc. 1991;45:307–11.

    Article  Google Scholar 

  66. Ghiamati E, Manoharan R, Nelson WH, Sperry JF. Appl Spectrosc. 1992;46:357–64.

    Article  Google Scholar 

  67. Manoharan R, Ghiamati E, Sperry JF, Nelson WH. Abstr Pap Am Chem Soc. 1990;200:138.

    Google Scholar 

  68. Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, et al. Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J. 2006;90:648–56.

    Article  PubMed  Google Scholar 

  69. Chan JW, Taylor DS, Lane S, Zwerdling T, Tuscano J, et al. Non-destructive identification of individual leukemia cells by laser tweezers Raman spectroscopy. Anal Chem. 2008;80:2180–7.

    Article  PubMed  Google Scholar 

  70. Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science. 1987;235:1517–20.

    Article  PubMed  Google Scholar 

  71. Padgett MJ, Molloy J, McGloin D. Optical tweezers: methods and applications. CRC Press; 2010. p. 1–3.

    Book  Google Scholar 

  72. Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal Chem. 2004;76:599–603.

    Article  Google Scholar 

  73. Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal Chem. 2008;80:2180–7.

    Article  Google Scholar 

  74. Huang SS, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li YQ. Levels of Ca2-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers. J Bacteriol. 2007;189(13):4681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Paidhungat M, Setlow B, Driks A, Setlow P. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol. 2000;182:5505–12.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Setlow B, Atluri S, Kitchel R, Koziol-Dube K, Setlow P. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β type small acid-soluble proteins. J Bacteriol. 2006;188:3740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst. 2006;131:875–85.

    Article  PubMed  Google Scholar 

  78. Mahadevan-Jansen A, Patil C, Pence I. Raman spectroscopy: from benchtop to bedside. In: Vo-Dinh T, editor. Biomedical photonics handbook. 2nd ed. Boca Raton, FL: CRC Press; 2014. p. 759–802.

    Google Scholar 

  79. Nguyen JQ, Gowani ZS, O’Connor M, Pence IJ, Nguyen T-Q, Holt GE, Schwartz HS, Halpern JL, Mahadevan-Jansen A. Intraoperative Raman spectroscopy of soft tissue sarcomas. Lasers Surg Med. 2016 https://doi.org/10.1002/lsm.22564.

  80. Escoriza MF, Vanbriesen JM, Stewart S, Maier J. Appl Spectrosc. 2000;61:8.

    Google Scholar 

  81. Nan XL, Tonary AM, Stolow A, Xie XS, Pezacki JP. Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-stokes Raman scattering microscopies. Chembiochem. 2006;7:1895–7.

    Article  PubMed  Google Scholar 

  82. Buschman HP, Marple ET, Wach ML, Bennett B, Schut TCB, et al. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem. 2000;72:3771–5.

    Article  Google Scholar 

  83. Mostaco-Guidolin LB, Sowa MG, Ridsdale A, Pegoraro AF, Smith MS, et al. Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging. Biomed Opt Express. 2010;1:59–73.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Motz JT, Fitzmaurice M, Miller A, Gandhi SJ, Haka AS, et al. In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J Biomed Opt. 2006;11:021003.

    Article  PubMed  Google Scholar 

  85. Zhang X, Yonzon CR, Van Duyne RP. Proc SPIE. 2003;5221:82–91.

    Article  Google Scholar 

  86. White DJ. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res. 1995;9:175–93.

    Article  PubMed  Google Scholar 

  87. Young DA, Featherstone JDB. Digital imaging fiber-optic transillumination, F-speed radiographic film and depth of approximal lesions. J Am Dent Assoc. 2005;136(12):1682–7.

    Article  PubMed  Google Scholar 

  88. Bin-Shuwaish M, Yaman P, Dennison J, Neiva G. The correlation of DIFOTI to clinical and radiographic images in Class II carious lesions. J Am Dent Assoc. 2008;139(10):1374–81.

    Article  PubMed  Google Scholar 

  89. Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with Digital Imaging Fiber-Optic Trans Illumination (DIFOTI): in vitro study. Caries Res. 1997;31(2):103–10.

    Article  Google Scholar 

  90. Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health. 2015;15(Suppl 1):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tam LE, McComb D. Diagnosis of occlusal caries: part II. Recent diagnostic technologies. J Can Dent Assoc. 2001;67(8):459–63.

    PubMed  Google Scholar 

  92. Fejerskov O, Kidd E. Dental caries: the disease and its clinical management. 2nd ed. Wiley-Blackwell; 2008.

    Google Scholar 

  93. Longbottom C, Huysmans MCDNJM. Electrical measurements for use in caries trials. J Dent Res. 2004;83:C76–9.

    Article  PubMed  Google Scholar 

  94. Ashley PF, Blinkhorn AS, Davies RM. Occlusal caries diagnosis: an in vitro histological validation of the Electronic Caries Monitor (ECM) and other methods. J Dent. 1998;26:83–8.

    Article  PubMed  Google Scholar 

  95. Guimerà A, Calderón E, Los P, Christie AM. Method and device for bio-impedance measurement with hard-tissue applications. Physiol Meas. 2008;29:S279–90.

    Article  PubMed  Google Scholar 

  96. Jablonski-Momeni A, Heinzel-Gutenbrunner M, Haak R, et al. Use of AC impedance spectroscopy for monitoring sound teeth and incipient carious lesions. Clin Oral Invest. 2017;21:2421–7. https://doi.org/10.1007/s00784-016-2038-2.

    Article  Google Scholar 

  97. Jablonski-Momeni A, Kneib L. Assessment of caries activity using the CALCIVIS caries activity imaging system. Open Access J Sci Technol. 2016; https://doi.org/10.11131/2016/101241.

  98. Longbottom C, Vernon B, Perfect E, Haughey AM, Christie A, Pitts N. Initial investigations of a novel bioluminescence method for imaging dental demineralization. Clin Exp Dent Res. 2021;7(5):786–94. https://doi.org/10.1002/cre2.402. Epub 2021 Jan 28.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pitts N, Shanks N, Longbottom C, Willins M, Vernon B. Clinical validation of a novel bioluminescence imaging technology for aiding the assessment of carious lesion activity status. Clin Exp Dent Res. 2021;7(5):772–85. https://doi.org/10.1002/cre2.400.

    Article  PubMed Central  Google Scholar 

  100. Bjelkhagen H, Sundström F. A clinically applicable laser luminescence method for the early detection of dental caries. IEEE J Quant Electron. 1981;17(12):2580–2.

    Article  Google Scholar 

  101. de Josselin de Jong E, Sundström F, Westerling H, Tranæus S, ten Bosch JJ, Angmar-Månsson B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res. 1995;29(1):2–7.

    Article  Google Scholar 

  102. Karlsson L, Tranæus S. Supplementary methods for detection and quantification of dental caries. J Laser Dent. 2008;16(1):6–14.

    Google Scholar 

  103. van der Veen MH, Thomas RZ, Huysmans MC, de Soet JJ. Red autofluorescence of dental plaque bacteria. Caries Res. 2006;40(6):542–5.

    Article  Google Scholar 

  104. Banerjee A, Boyde A. Autofluorescence and mineral content of carious dentine: scanning optical and backscattered electron microscopic studies. Caries Res. 1998;32(3):219–26.

    Article  PubMed  Google Scholar 

  105. Rechmann P, Liou SW, Rechmann BMT, Featherstone JDB. Soprocare—450 nm wavelength detection tool for microbial plaque and gingival inflammation—a clinical study. In: Rechmann P, Fried D, editors. Lasers in dentistry XX, Proc SPIE, vol. 8929; 2014. p. 892906. https://doi.org/10.1117/12.2047275.

    Chapter  Google Scholar 

  106. Drancourt N, Roger-Leroi V, Pereira B, et al. Validity of Soprolife camera and Calcivis device in caries lesion activity assessment. Br Dent J. 2020; https://doi.org/10.1038/s41415-020-2316-x.

  107. Akarsu S, Köprülü H. In vivo comparison of the efficacy of DIAGNOdent by visual inspection and radiographic diagnostic techniques in the diagnosis of occlusal caries. J Clin Dent. 2006;17(3):53–8.

    PubMed  Google Scholar 

  108. Barbería E, Maroto M, Arenas M, Silva CC. A clinical study of caries diagnosis with a laser fluorescence system. JADA. 2008;139(5):572–9.

    PubMed  Google Scholar 

  109. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci. 2001;109(1):14–9.

    Article  PubMed  Google Scholar 

  110. Konig K, Flemming G, Hibst R. Laser-induced autofluorescence spectroscopy of dental caries. Cell Mol Biol. 1999;44(8):1293–300.

    Google Scholar 

  111. Sürme K, Kara NB, Yilmaz Y. In vitro evaluation of occlusal caries detection methods in primary and permanent teeth: a comparison of CarieScan PRO, DIAGNOdent Pen, and DIAGNOcam methods. Photobiomodul Photomed Laser Surg. 2020;38(2):105–11. https://doi.org/10.1089/photob.2019.4686. Epub 2019 Oct 7.

    Article  Google Scholar 

  112. Iranzo-Cortés JE, Montiel-Company JM, Almerich-Torres T, Bellot-Arcís C, Almerich-Silla JM. Use of DIAGNOdent and VistaProof in diagnostic of pre-cavitated caries lesions-a systematic review and meta-analysis. J Clin Med. 2019;9(1):20. https://doi.org/10.3390/jcm9010020.

    Article  PubMed Central  Google Scholar 

  113. Mitchell C, Zaku H, Milgrom P, et al. The accuracy of laser fluorescence (DIAGNOdent) in assessing caries lesion activity on root surfaces, around crown margins, and in furcations in older adults. BDJ Open. 2021;7:14. https://doi.org/10.1038/s41405-021-00069-2.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Beauchamp J, et al. Evidence-based clinical recommendations for the use of pit-and-fissure sealants: a report of the American Dental Association Council on Scientific Affairs. JADA. 2008;139:257. http://jada.ada.org.

    Google Scholar 

  115. Makowski AJ, Patil CA, Mahadevan-Jansen A, Nyman JS. Polarization control of Raman spectroscopy optimizes the assessment of bone tissue. J Biomed Opt. 2013;18(5):055005.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ko AC-T, Choo-Smith L-P, Hewko M, Leonardi L, Sowa MG. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt. 2005;10(3):031118.

    Article  Google Scholar 

  117. de Carvalho FB, Barbosa AFS, Zanin FAA, Júnior AB, Júnior LS, Pinheiro ALB. Use of laser fluorescence in dental caries diagnosis: a fluorescence x bio molecular vibrational spectroscopic comparative study. Braz Dent J. 2013;24(1):59–63.

    Article  PubMed  Google Scholar 

  118. Coello B, López-Álvarez M, Rodríguez-Domínguez M, Serra J, González P. Quantitative evaluation of the mineralization level of dental tissues by Raman spectroscopy. Biomed Phys Eng Express. 2015;1:045204.

    Article  Google Scholar 

  119. Boskey AL, Mendelsohn R. Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc. 2005;38(1–2):107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Xu C, Wang Y. Chemical composition and structure of peritubular and intertubular human dentine revisited. Arch Oral Biol. 2012;57:383–91.

    Article  Google Scholar 

  121. Feldchtein FI, Gelikonov GV, Gelikonov VM, Iksanov RR, Kuranov RV, Sergeev AM, Gladkova ND, Ourutina MN, Warren JA Jr, Reitze DH. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3:239–50.

    Article  PubMed  Google Scholar 

  122. Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt. 1995;34(7):1278–85.

    Article  PubMed  Google Scholar 

  123. Fried D, Featherstone JDB, Glena RE, Seka W. The nature of light scattering in dental enamel and dentin at visible and near-IR wavelengths. Appl Opt. 1995;34(7):1278–85.

    Article  PubMed  Google Scholar 

  124. Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt. 1973;12:555–63.

    Article  PubMed  Google Scholar 

  125. Jones RS, Fried D. Attenuation of 1310-nm and 1550-nm laser light through sound dental enamel. In: Lasers in dentistry VIII, Proc SPIE, vol. 4610. Bellingham, WA: SPIE; 2002. p. 187–90.

    Chapter  Google Scholar 

  126. Chan KH, Fried D. Multispectral cross-polarization reflectance measurements suggest high contrast of demineralization on tooth surfaces at wavelengths beyond 1300-nm due to reduced light scattering in sound enamel. J Biomed Opt. 2018;23(6):060501.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310-nm. J Biomed Opt. 2006;11(3):034023.

    Article  Google Scholar 

  128. Buhler C, Ngaotheppitak P, Fried D. Imaging of occlusal dental caries (decay) with near-IR light at 1310-nm. Opt Express. 2005;13(2):573–82.

    Article  Google Scholar 

  129. Zakian C, Pretty I, Ellwood R. Near-infrared hyperspectral imaging of teeth for dental caries detection. J Biomed Opt. 2009;14(6):064047.

    Article  PubMed  Google Scholar 

  130. Ng C, Almaz EC, Simon JC, Fried D, Darling CL. Near-infrared imaging of demineralization on the occlusal surfaces of teeth without the interference of stains. J Biomed Opt. 2019;24(3):036002.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chung S, Fried D, Staninec M, Darling CL. Multispectral near-IR reflectance and transillumination imaging of teeth. Biomed Opt Express. 2011;2(10):2804–14.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Staninec M, Lee C, Darling CL, Fried D. In vivo near-IR imaging of approximal dental decay at 1,310 nm. Lasers Surg Med. 2010;42(4):292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Peers A, Hill FJ, Mitropoulos CM, Holloway PJ. Validity and reproducibility of clinical examination, fibre-optic transillumination, and bite-wing radiology for the diagnosis of small approximal carious lesions. Caries Res. 1993;27:307–11.

    Article  PubMed  Google Scholar 

  134. Pine CM, ten Bosch JJ. Dynamics of and diagnostic methods for detecting small carious lesions. Caries Res. 1996;30(6):381–8.

    Article  PubMed  Google Scholar 

  135. Purdell-Lewis DJ, Pot T. A comparison of radiographic and fibre-optic diagnoses of approximal caries lesions. J Dent. 1974;2(4):143–8.

    Article  PubMed  Google Scholar 

  136. Vaarkamp J, ten Bosch JJ, Verdonschot EH, Bronkhoorst EM. The real performance of bitewing radiography and fiber-optic transillumination in approximal caries diagnosis. J Dent Res. 2000;79(10):1747–51.

    Article  PubMed  Google Scholar 

  137. Stephen KW, Russell JI, Creanor SL, Burchell CK. Comparison of fibre optic transillumination with clinical and radiographic caries diagnosis. Community Dent Oral Epidemiol. 1987;15(2):90–4.

    Article  PubMed  Google Scholar 

  138. Simon JC, Lucas SA, Lee RC, Staninec M, Tom H, Chan KH, Darling CL, Fried D. Near-IR transillumination and reflectance imaging at 1300-nm and 1500-1700-nm for in vivo caries detection. Lasers Surg Med. 2016;48(6):828–36.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Simon JC, Kang H, Staninec M, Jang AT, Chan KH, Darling CL, Lee RC, Fried D. Near-IR and CP-OCT imaging of suspected occlusal caries lesions. Lasers Surg Med. 2017;49(3):215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhu Y, Abdelaziz M, Simon J, Le O, Fried D. Dual short wavelength infrared transillumination/reflectance mode imaging for caries detection. J Biomed Opt. 2021;26(4):043004.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jones G, Jones RS, Fried D. Transillumination of interproximal caries lesions with 830-nm light. In: Rechmann P, editor. Lasers in dentistry X, Proc SPIE, vol. 5313. Bellingham, WA: SPIE; 2004. p. 17–22.

    Chapter  Google Scholar 

  142. Kuhnisch J, Sochtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A, Hickel R. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig. 2015;20(4):821–9.

    Article  PubMed  Google Scholar 

  143. Sochtig F, Hickel R, Kuhnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int. 2014;45(6):531–8.

    PubMed  Google Scholar 

  144. Jablonski-Momeni A, Jablonski B, Lippe N. Clinical performance of the near-infrared imaging system VistaCam iX Proxi for detection of approximal enamel lesions. BDJ Open. 2017;3:17012.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Dye BA, Tan S, Lewis BG, Barker LK, Thornton-Evans TG, Eke PI, Beltrán-Aguilar ED, Horowitz AM, Li CH. Trends in oral health status, United States, 1988–1994 and 1999–2004. Vital Health Stat 11. 2007;248:1–92.

    Google Scholar 

  146. Dye BA, Thornton-Evans T, Li X, Iafolla TJ. Dental caries and tooth loss in adults in the United States, 2011–2012. In: National Center for Health Statistics, editor. NCHS data brief, #197. National Center for Health Statistics; 2015.

    Google Scholar 

  147. Yang VB, Curtis DA, Fried D. Cross-polarization reflectance imaging of root caries and dental calculus at wavelengths from 400-2350-nm. J Biophotonics. 2018;11:e201800113.

    Article  PubMed  Google Scholar 

  148. Krause F, Braun A, Brede O, Eberhard J, Frentzen M, Jepsen S. Evaluation of selective calculus removal by a fluorescence feedback-controlled Er:YAG laser in vitro. J Clin Periodontol. 2007;34(1):66–71.

    Article  PubMed  Google Scholar 

  149. Rechmann P. Dental laser research: selective ablation of caries, calculus, and microbial plaque: from the idea to the first in vivo investigation. Dent Clin N Am. 2004;48(4):1077–1104, ix.

    Article  PubMed  Google Scholar 

  150. Schoenly JE, Seka W, Rechmann P. Investigation into the optimum beam shape and fluence for selective ablation of dental calculus at lambda = 400 nm. Lasers Surg Med. 2010;42(1):51–61.

    Article  Google Scholar 

  151. Chan KH, Fried D. Selective ablation of dental caries using coaxial CO2 (9.3-μm) and near-IR (1880-nm) lasers. Lasers Surg Med. 2019;51:176–84.

    Article  PubMed  Google Scholar 

  152. Fried WA, Chan KH, Darling CL, Curtis DA, Fried D. Image-guided ablation of dental calculus from root surfaces using a DPSS Er:YAG laser. Lasers Surg Med. 2020;52(3):247–58.

    Article  PubMed  Google Scholar 

  153. Mjor I, Moorehead J, Dahl J. Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J. 2000;50:361–6.

    Article  PubMed  Google Scholar 

  154. Li X, King TA. Microstructure and optical properties of PMMA/gel silica glass composites. J Sol-Gel Sci Technol. 1995;4:75–82.

    Article  Google Scholar 

  155. Stansbury JW, Dickens SH. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater. 2001;17:71–9.

    Article  Google Scholar 

  156. Logan CM, Co KU, Fried WA, Simon JC, Staninec M, Fried D, Darling CL. Multispectral near-infrared imaging of composite restorations in extracted teeth. In: Lasers in dentistry XX, Proc SPIE, vol. 8929. Bellingham, WA: SPIE; 2014. p. 89290R.

    Chapter  Google Scholar 

  157. Fried WA, Simon JC, Darling CL, Le O, Fried D. High-contrast reflectance imaging of composite restorations color-matched to tooth structure at 1000–2300-nm. In: Lasers in dentistry XXIII, Proc SPIE, vol. 10044. Bellingham, WA: SPIE; 2017. p. 100440J.

    Chapter  Google Scholar 

  158. Alexander R, Fried D. Selective removal of orthodontic composite using 355-nm Q-switched laser pulses. Lasers Surg Med. 2001;30:240–5.

    Article  Google Scholar 

  159. Fried WA, Chan KH, Darling CL, Fried D. Use of a DPSS Er:YAG laser for the selective removal of composite from tooth surfaces. Biomed Opt Express. 2016;9(10):5026–36.

    Article  Google Scholar 

  160. Kahler W. The cracked tooth conundrum: terminology, classification, diagnosis, and management. Am J Dent. 2008;21(5):275–82.

    PubMed  Google Scholar 

  161. Culjat MO, Singh RS, Brown ER, Neurgaonkar RR, Yoon DC, White SN. Ultrasound crack detection in a simulated human tooth. Dentomaxillofac Radiol. 2005;34(2):80–5.

    Article  Google Scholar 

  162. Fried WA, Simon JC, Lucas S, Chan KH, Darling CL, Staninec M, Fried D. Near-IR imaging of cracks in teeth. In: Lasers in dentistry XX, Proc SPIE, vol. 8929. Bellingham, WA: SPIE; 2014. p. 89290Q.

    Chapter  Google Scholar 

  163. Darling CL, Fried D. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel. Opt Express. 2008;16(4):2685–93.

    Article  PubMed  Google Scholar 

  164. Maung LH, Lee C, Fried D. Near-IR imaging of thermal changes in enamel during laser ablation. In: Lasers in dentistry XVI, Proc SPIE, vol. 7549. Bellingham, WA: SPIE; 2010. p. 754902.

    Chapter  Google Scholar 

  165. Sapra A, Darbar A, George R. Laser-assisted diagnosis of symptomatic cracks in teeth with cracked tooth: a 4-year in-vivo follow-up study. Aust Endod J. 2020;46(2):197–203. https://doi.org/10.1111/aej.12391. Epub 2019 Dec 9.

    Article  PubMed  Google Scholar 

  166. Stookey GK. Quantitative light fluorescence: a technology for early monitoring of the caries process. Dent Clin N Am. 2005;49(4):753–70.

    Article  PubMed  Google Scholar 

  167. Ando M, Stookey GK, Zero DT. Ability of quantitative light-induced fluorescence (QLF) to assess the activity of white spot lesions during dehydration. Am J Dent. 2006;19(1):15–8.

    Google Scholar 

  168. Ando M, Ferreira-Zandona AG, Eckert GJ, Zero DT, Stookey GK. Pilot clinical study to assess caries lesion activity using quantitative light-induced fluorescence during dehydration. J Biomed Opt. 2017;22(3):35005.

    Article  PubMed  Google Scholar 

  169. Lee RC, Darling CL, Fried D. Assessment of remineralization via measurement of dehydration rates with thermal and near-IR reflectance imaging. J Dent. 2015;43:1032–42.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lee RC, Darling CL, Fried D. Activity assessment of root caries lesions with thermal and near-infrared imaging methods. J Biophotonics. 2016;10(3):433–45.

    Article  PubMed Central  Google Scholar 

  171. Lee RC, Kang H, Darling CL, Fried D. Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography. Biomed Opt Express. 2014;5(9):2950–62.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Yang V, Zhu Y, Curtis D, Le O, Chang N, Fried W, Simon JC, Banan P, Darling C, Fried D. Thermal imaging of root caries in vivo. J Dent Res. 2020;99(13):1502–8.

    Article  PubMed Central  Google Scholar 

  173. Chang NN, Jew JM, Fried D. Lesion dehydration rate changes with the surface layer thickness during enamel remineralization. In: Lasers in dentistry XXIV, Proc SPIE, vol. 10473. Bellingham, WA: SPIE; 2018. p. 104730D.

    Google Scholar 

  174. Fried WA, Abdelaziz M, Darling CL, Fried D. High contrast reflectance imaging of enamel demineralization and remineralization at 1950-nm for the assessment of lesion activity. Lasers Surg Med. 2021;53(7):968–77.

    Article  PubMed Central  Google Scholar 

  175. Tressel J, Abdelaziz M, Fried D. Dynamic SWIR imaging near the 1950 nm water absorption band for caries lesion diagnosis. J Biomed Opt. 2021;26(5):056006.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Shimada Y, Sadr A, Sumi Y, Tagami J. Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Curr Oral Health Rep. 2015;2(2):73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Hitzenberger CK, Gotzinger E, Sticker M, Pircher M, Fercher AF. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express. 2001;9:780–90.

    Article  PubMed  Google Scholar 

  178. Fried D, Xie J, Shafi S, Featherstone JDB, Breunig TM, Lee C. Imaging carious lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt. 2002;7:618–27.

    Article  PubMed  Google Scholar 

  179. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt. 1999;38(10):2092.

    Article  PubMed  Google Scholar 

  180. Amaechi BT, Higham SM, Podoleanu AG, Rogers JA, Jackson DA. Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J Oral Rehabil. 2001;28:1092–3.

    Article  PubMed  Google Scholar 

  181. Gossage KW, Tkaczyk TS, Rodriguez JJ, Barton JK. Texture analysis of optical coherence tomography images: feasibility for tissue classification. J Biomed Opt. 2003;8:570–5. https://doi.org/10.1117/1.1577575.

    Article  PubMed  Google Scholar 

  182. Mandurah MM, Sadr A, Bakhsh TA, Shimada Y, Sumi Y, Tagami J. Characterization of transparent dentin in attrited teeth using optical coherence tomography. Lasers Med Sci. 2015;30(4):1189–96. https://doi.org/10.1007/s10103-014-1541-4.

    Article  PubMed  Google Scholar 

  183. Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent. 2010;38(8):655–65. https://doi.org/10.1016/j.jdent.2010.05.004. Epub 2010 May 12.

    Article  PubMed  Google Scholar 

  184. Makishi P, Shimada Y, Sadr A, Tagami J, Sumi Y. Non-destructive 3D imaging of composite restorations using optical coherence tomography: marginal adaptation of self-etch adhesives. J Dent. 2011;39(4):316–25. https://doi.org/10.1016/j.jdent.2011.01.011.

    Article  Google Scholar 

  185. Bakhsh TA, Sadr A, Shimada Y, Tagami J, Sumi Y. Non-invasive quantification of resin-dentin interfacial gaps using optical coherence tomography: validation against confocal microscopy. Dent Mater. 2011;27(9):915–25.

    Article  PubMed  Google Scholar 

  186. Todea C, Balabuc C, Sinescu C, et al. En face optical coherence tomography investigation of apical microleakage after laser assisted endodontic treatment. Lasers Med Sci. 2010;25:629. https://doi.org/10.1007/s10103-009-0680-5.

    Article  PubMed  Google Scholar 

  187. Sordillo LA, Pu Y, Pratavieira S, Budansky Y, Alfano RR. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J Biomed Opt. 2014;19(5):056004.

    Article  PubMed  Google Scholar 

  188. Weber JR, Baribeau F, Grenier P, Emond F, Dubois S, Duchesne F, Girard M, Pope T, Gallant P, Mermut O, Moghadam HG. Towards a bimodal proximity sensor for in situ neurovascular bundle detection during dental implant surgery. Biomed Opt Express. 2013;5(1):16–30.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bouma BE, Tearney GJ. Handbook of optical coherence tomography. New York: Marcel Dekker; 2002.

    Google Scholar 

  190. Drexler W, Fujimoto JG, editors. Optical coherence tomography technology and applications. New York: Springer; 2008.

    Google Scholar 

  191. Otis LL, Everett MJ, Sathyam US, Colston BW Jr. Optical coherence tomography: a new imaging technology for dentistry. J Am Dent Assoc. 2000;131(4):511–4.

    Article  PubMed  Google Scholar 

  192. Fried D, Featherstone JDB, Darling CL, Jones RS, Ngaotheppitak P, Buehler CM. Early caries imaging and monitoring with near-IR light. Dent Clin North Am. 2005;49(4):771–94.

    Article  PubMed  Google Scholar 

  193. Fried D. Ch. 68: Dentistry: diagnostics and spectroscopy. In: Popp J, editor. Handbook of biophotonics, Photonics for health care, vol. 2. New York: Wiley; 2012.

    Google Scholar 

  194. Katkar RA, Tadinada SA, Amaechi BT, Fried D. Optical coherence tomography. Dent Clin N Am. 2018;62(3):421–34.

    Article  PubMed  Google Scholar 

  195. Colston B, Everett M, Da Silva L, Otis L, Stroeve P, Nathel H. Imaging of hard and soft tissue structure in the oral cavity by optical coherence tomography. Appl Opt. 1998;37(19):3582–5.

    Article  PubMed  Google Scholar 

  196. Colston BW, Sathyam US, DaSilva LB, Everett MJ, Stroeve P. Dental OCT. Opt Express. 1998;3(3):230–8.

    Article  PubMed  Google Scholar 

  197. Feldchtein FI, Gelikonov GV, Gelikonov VM, Iksanov RR, Kuranov RV, Sergeev AM, Gladkova ND, Ourutina MN, Warren JA, Reitze DH. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3(3):239–51.

    Article  Google Scholar 

  198. Zuluaga AF, Yang V, Jabbour J, Ford T, Kemp N, Fried D. Real-time visualization of hidden occlusal and approximal lesions with an OCT dental handpiece. In: Lasers in dentistry XXV, Proc SPIE, vol. 10857. Bellingham, WA: SPIE; 2019. p. 108570E.

    Google Scholar 

  199. Baumgartner A, Hitzenberger CK, Dicht S, Sattmann H, Moritz A, Sperr W, Fercher AF. Optical coherence tomography for dental structures. In: Lasers in dentistry IV, Proc SPIE, vol. 3248. Bellingham, WA: SPIE; 1998. p. 130–6.

    Chapter  Google Scholar 

  200. Baumgartner A, Dicht S, Hitzenberger CK, Sattmann H, Robi B, Moritz A, Sperr W, Fercher AF. Polarization-sensitive optical coherence tomography of dental structures. Caries Res. 2000;34:59–69.

    Article  PubMed  Google Scholar 

  201. Everett MJ, Colston BW, Sathyam US, Silva LBD, Fried D, Featherstone JDB. Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT). In: Featherstone R, Fried D, editors. Lasers in dentistry V, Proc SPIE, vol. 3593. Bellingham, WA: SPIE; 1999. p. 177–83.

    Chapter  Google Scholar 

  202. Wang XJ, Zhang JY, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt. 1999;38(10):585–90.

    Google Scholar 

  203. Fried D, Xie J, Shafi S, Featherstone JDB, Breunig T, Lee CQ. Early detection of dental caries and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt. 2002;7(4):618–27.

    Article  PubMed  Google Scholar 

  204. Jones RS, Staninec M, Fried D. Imaging artificial caries under composite sealants and restorations. J Biomed Opt. 2004;9(6):1297–304.

    Article  PubMed  Google Scholar 

  205. Kang H, Darling CL, Fried D. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dent Mater. 2012;28(5):488–94.

    Article  PubMed  Google Scholar 

  206. Jones RS, Fried D. Remineralization of enamel caries can decrease optical reflectivity. J Dent Res. 2006;85(9):804–8.

    Article  PubMed  Google Scholar 

  207. Jones RS, Darling CL, Featherstone JD, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. J Biomed Opt. 2006;11(1):014016.

    Article  PubMed  Google Scholar 

  208. Jones RS, Darling CL, Featherstone JD, Fried D. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res. 2006;40(2):81–9.

    Article  PubMed  Google Scholar 

  209. Madjarova VD, Yasuno Y, Makita S, Hori Y, Voeffray JB, Itoh M, Yatagai T, Tamura M, Nanbu T. Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography. In: Coherence domain optical methods and optical coherence tomography in biomedicine X, Proc SPIE, vol. 6079. Bellingham, WA: SPIE; 2006. p. 60790N.

    Chapter  Google Scholar 

  210. Seon YR, Jihoon N, Hae YC, Woo JC, Byeong HL, Gil-Ho Y. Realization of fiber-based OCT system with broadband photonic crystal fiber coupler. In: Coherence domain optical methods and optical coherence tomography in biomedicine X, Proc SPIE, vol. 6079. Bellingham, WA: SPIE; 2006. p. 60790I.

    Chapter  Google Scholar 

  211. Yamanari M, Makita S, Violeta DM, Yatagai T, Yasuno Y. Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt Express. 2006;14(14):6502.

    Article  PubMed  Google Scholar 

  212. Furukawa H, Hiro-Oka H, Amano T, DongHak C, Miyazawa T, Yoshimura R, Shimizu K, Ohbayashi K. Reconstruction of three-dimensional structure of an extracted tooth by OFDR-OCT. In: Coherence domain optical methods and optical coherence tomography in biomedicine X, Proc SPIE, vol. 6079. Bellingham, WA: SPIE; 2006. p. 60790T.

    Chapter  Google Scholar 

  213. Bader JD, Shugars DA. The evidence supporting alternative management strategies for early occlusal caries and suspected occlusal dentinal caries. J Evid Based Dent Pract. 2006;6(1):91–100.

    Article  Google Scholar 

  214. Bader JD, Shugars DA, Bonito AJ. A systematic review of the performance of methods for identifying carious lesions. J Public Health Dent. 2002;62(4):201–13.

    Article  Google Scholar 

  215. Staninec M, Douglas SM, Darling CL, Chan K, Kang H, Lee RC, Fried D. Nondestructive clinical assessment of occlusal caries lesions using near-IR imaging methods. Lasers Surg Med. 2011;43(10):951–9.

    Article  PubMed Central  Google Scholar 

  216. Lee C, Darling C, Fried D. Polarization sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater. 2009;25(6):721–8.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater. 2009;90(2):802–12.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Manesh SK, Darling CL, Fried D. Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin. J Biomed Opt. 2009;14(4):044002.

    Article  PubMed  Google Scholar 

  219. Hsieh YS, Ho YC, Lee SY, Lu CW, Jiang CP, Chuang CC, Wang CY, Sun CW. Subgingival calculus imaging based on swept-source optical coherence tomography. J Biomed Opt. 2011;16(7):071409.

    Article  PubMed  Google Scholar 

  220. Kao MC, Lin CL, Kung CY, Huang YF, Kuo WC. Miniature endoscopic optical coherence tomography for calculus detection. Appl Opt. 2015;54(24):7419–23.

    Article  Google Scholar 

  221. Shemesh H, van Soest G, Wu MK, Wesselink PR. Diagnosis of vertical root fractures with optical coherence tomography. J Endod. 2008;34(6):739–42.

    Article  PubMed  Google Scholar 

  222. Yang VB, Curtis DA, Fried D. Use of optical clearing agents for imaging root surfaces with optical coherence tomography. IEEE J Sel Topics Quant Electron. 2018;25(1):1–7.

    Article  Google Scholar 

  223. Chong SL, Darling CL, Fried D. Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography. Lasers Surg Med. 2007;39(5):422–7.

    Article  PubMed  Google Scholar 

  224. Hirasuna K, Fried D, Darling CL. Near-IR imaging of developmental defects in dental enamel. J Biomed Opt. 2008;13(4):044011.

    Article  PubMed  Google Scholar 

  225. Chan KH, Chan AC, Fried WA, Simon JC, Darling CL, Fried D. Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography. J Biophotonics. 2015;8(1–2):36–45.

    Article  PubMed  Google Scholar 

  226. Fried D, Ngaotheppitak P, Darling CL, Ho CM. Polarization sensitive optical coherence tomography for quantifying the severity of natural caries lesions on occlusal surfaces. In: Lasers in dentistry XIII, Proc SPIE, vol. 6425. Bellingham, WA: SPIE; 2007. p. 64250U.

    Chapter  Google Scholar 

  227. Ngaotheppitak P, Darling CL, Fried D. Polarization optical coherence tomography for the measuring the severity of caries lesions. Lasers Surg Med. 2005;37(1):78–88.

    Article  PubMed  Google Scholar 

  228. Ngaotheppitak P, Darling CL, Fried D, Bush J, Bell S. PS-OCT of occlusal and interproximal caries lesions viewed from occlusal surfaces. In: Lasers in dentistry XII, Proc SPIE, vol. 6137. Bellingham, WA: SPIE; 2006. p. 61370L.

    Chapter  Google Scholar 

  229. Ngaotheppitak P, Darling CL, Fried D. PS-OCT of natural pigmented and non-pigmented interproximal caries lesions. In: Lasers in dentistry XI, Proc SPIE, vol. 5687. Bellingham, WA: SPIE; 2006. p. 25–33.

    Chapter  Google Scholar 

  230. Louie T, Lee C, Hsu D, Hirasuna K, Manesh S, Staninec M, Darling CL, Fried D. Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med. 2010;42:738–45.

    Article  PubMed Central  Google Scholar 

  231. Nee A, Chan K, Kang H, Staninec M, Darling CL, Fried D. Longitudinal monitoring of demineralization peripheral to orthodontic brackets using cross polarization optical coherence tomography. J Dent. 2014;42(5):547–55.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Otis LL, Al-Sadhan RI, Meiers J, Redford-Badwal D. Identification of occlusal sealants using optical coherence tomography. J Clin Dent. 2000;14(1):7–10.

    Google Scholar 

  233. Lenton P, Rudney J, Chen R, Fok A, Aparicio C, Jones RS. Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography. Dent Mater. 2012;28(7):792–800.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Holtzman JS, Osann K, Pharar J, Lee K, Ahn YC, Tucker T, Sabet S, Chen Z, Gukasyan R, Wilder-Smith P. Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg Med. 2010;42(8):752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Stahl J, Kang H, Fried D. Imaging simulated secondary caries lesions with cross polarization OCT. In: Lasers in dentistry XVI, Proc SPIE, vol. 7549. Bellingham, WA: SPIE; 2010. p. 754905.

    Chapter  Google Scholar 

  236. Lammeier C, Li Y, Lunos S, Fok A, Rudney J, Jones RS. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging. J Biomed Opt. 2012;17(10):106002.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Tom H, Simon JC, Chan KH, Darling CL, Fried D. Near-infrared imaging of demineralization under sealants. J Biomed Opt. 2014;19(7):77003.

    Article  PubMed  Google Scholar 

  238. de Melo LS, de Araujo RE, Freitas AZ, Zezell D, Vieira ND, Girkin J, Hall A, Carvalho MT, Gomes AS. Evaluation of enamel dental restoration interface by optical coherence tomography. J Biomed Opt. 2005;10(6):064027.

    Article  Google Scholar 

  239. Nazari A, Sadr A, Shimada Y, Tagami J, Sumi Y. 3D assessment of void and gap formation in flowable resin composites using optical coherence tomography. J Adhes Dent. 2013;15(3):237–43.

    PubMed  Google Scholar 

  240. Baudelet M, Smith BW. The first years of laser-induced breakdown spectroscopy. J Anal At Spectrom. 2013; https://doi.org/10.1039/C3JA50027F.

  241. Niemz MH. Diagnosis of caries by spectral analysis of laser induced plasma sparks. Proc SPIE. 1994;2327:56.

    Article  Google Scholar 

  242. Samek O, Telle HH, Beddows DCS. Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth. BMC Oral Health. 2001;1:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Singh VK, Kumar V, Sharma J. Importance of laser-induced breakdown spectroscopy for hard tissues (bone, teeth) and other calcified tissue materials. Lasers Med Sci. 2015;30:1763–78.

    Article  Google Scholar 

  244. Fang X, Ahmad SR, Mayo M, Iqbal S. Elemental analysis of urinary calculi by laser-induced plasma spectroscopy. Lasers Med Sci. 2005;20:132–7.

    Article  PubMed  Google Scholar 

  245. Singh VK, Rai AK, Rai PK, Jindal PK. Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy. Lasers Med Sci. 2009;24:749–59.

    Article  PubMed  Google Scholar 

  246. Anzano J, Lasheras RJ. Strategies for the identification of urinary calculus by laser induced breakdown spectroscopy. Talanta. 2009;79:352–60.

    Google Scholar 

  247. Pathak AK, Singh VK, Rai NK, Rai AK, Rai PK, Rai PK, Rai S, Baruah GD. Study of different concentric rings inside gallstones with LIBS. Lasers Med Sci. 2011; https://doi.org/10.1007/s10103-011-0886-1.

  248. Wu J, Zhang W, Shao X, Lin Z, Liu X. Simulated body fluid by laser-induced breakdown spectroscopy. Chin J Laser B. 2008;35:445–7.

    Article  Google Scholar 

  249. Amaechi BT, Owosho AA, Fried D. Fluorescence and near-infrared light transillumination. Dent Clin N Am. 2018;62(3):435–52.

    Article  PubMed  Google Scholar 

  250. Wilder-Smith P, Ajdaharian J, editors. Oral diagnosis: minimally invasive imaging approaches. Springer; 2020.

    Google Scholar 

  251. Zandona AF, Longbottom C. Detection and assessment of dental caries. Springer; 2019.

    Book  Google Scholar 

  252. Harris N, Garcia-Godoy F. Primary preventive dentistry. Stamford, CT: Appleton & Lange; 1999.

    Google Scholar 

  253. Mertz-Fairhurst EJ. Pit-and-fissure sealants: a global lack of scientific transfer? J Dent Res. 1992;115:1543–4.

    Article  Google Scholar 

  254. Fejerskov O, Nyvad B, Kidd E, editors. Dental caries: the disease and its clinical management. Wiley Blackwell; 2015.

    Google Scholar 

  255. Hevinga MA, Opdam NJ, Frencken JE, Bronkhorst EM, Truin GJ. Microleakage and sealant penetration in contaminated carious fissures. J Dent. 2007;35(12):909–14.

    Article  PubMed  Google Scholar 

  256. Hevinga MA, Opdam NJ, Frencken JE, Bronkhorst EM, Truin GJ. Can caries fissures be sealed as adequately as sound fissures? J Dent Res. 2008;87(5):495–8.

    Article  PubMed  Google Scholar 

  257. Kidd EA. How ‘clean’ must a cavity be before restoration? Caries Res. 2004;38(3):305–13.

    Article  PubMed  Google Scholar 

  258. Hibst R, Graser R, Udart M, Stock K. Mechanism of high-power NIR laser bacteria inactivation. J Biophotonics. 2010;3(5–6):296–303.

    Article  PubMed  Google Scholar 

  259. Chan KH, Hirasuna K, Fried D. Rapid and selective removal of composite from tooth surfaces with a 9.3-μm CO2 laser using spectral feedback. Lasers Surg Med. 2011;43(8):824–32.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Louie TM, Jones RS, Sarma AV, Fried D. Selective removal of composite sealants with near-ultraviolet laser pulses of nanosecond duration. J Biomed Opt. 2005;10(1):14001.

    Article  Google Scholar 

  261. Alexander R, Xie J, Fried D. Selective removal of residual composite from dental enamel surfaces using the third harmonic of a Q-switched Nd:YAG laser. Lasers Surg Med. 2002;30(3):240–5.

    Article  PubMed  Google Scholar 

  262. Wheeler CR, Fried D, Featherstone JD, Watanabe LG, Le CQ. Irradiation of dental enamel with Q-switched lambda = 355-nm laser pulses: surface morphology, fluoride adsorption, and adhesion to composite resin. Lasers Surg Med. 2003;32(4):310–7.

    Article  Google Scholar 

  263. Myers TD, Myers WD. The use of a laser for debridement of incipient caries. J Prosthet Dent. 1985;53:776–9.

    Article  Google Scholar 

  264. Harris DM, White JM, Goodis H, Arcoria CJ, Simon J, Carpenter WM, Fried D, Burkart J, Yessik M, Myers T. Selective ablation of surface enamel caries with a pulsed Nd:YAG dental laser. Lasers Surg Med. 2002;30(5):342–50.

    Article  PubMed  Google Scholar 

  265. Hibst R, Keller U. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg Med. 1989;9:338–44.

    Article  PubMed  Google Scholar 

  266. Hennig T, Rechmann P, Jeitner P, Kaufmann R. Caries-selective ablation: the second threshold. In: Lasers in orthopedic, dental, and veterinary medicine II, Proc SPIE, vol. 1880. Bellingham, WA: SPIE; 1993. p. 117.

    Chapter  Google Scholar 

  267. Fan K, Fried D. Scanning ablation of root caries with acoustic feedback control. In: Lasers in dentistry XIII, Proc SPIE, vol. 6425. Bellingham, WA: SPIE; 2007. p. 64250J.

    Chapter  Google Scholar 

  268. Arima MK, Matsumoto K. Effects of ARF: excimer laser irradiation on human enamel and dentin. Lasers Surg Med. 1993;13:97–105.

    Article  Google Scholar 

  269. Schoenly JE, Seka W, Rechmann P. Pulsed laser ablation of dental calculus in the near ultraviolet. J Biomed Opt. 2014;19(2):028003.

    Article  PubMed  Google Scholar 

  270. Grad L, Mozina J, Susteric D, Fundek N, Skaleric U, Lukac M, Cencic M, Nemes K. Optoacoustic studies of Er:YAG laser ablation in hard tissue. In: Lasers in surgery: advanced characterization, therapeutics, and systems IV, Proc SPIE, vol. 2128. Bellingham, WA: SPIE; 1994. p. 456–65.

    Google Scholar 

  271. Esenaliev RO, Oraevsky AA, Letokhov VS, Karabutov AA, Malinsky TV. Studies of acoustical shock waves in the pulsed laser ablation of biotissue. Lasers Surg Med. 1993;13:470–84.

    Google Scholar 

  272. Hennig T, Rechmann P, Pilgrim C, Kaufmann R. Basic principles of caries selective ablation by pulsed lasers. In: Proceedings of the third international congress on lasers in dentistry. 1992. p. 119–20.

    Google Scholar 

  273. Hennig T, Rechmann P, Jeitner P. Effects of a second harmonic Alexandrite laser on human dentin. In: Advanced laser dentistry, Proc SPIE, vol. 1984. Bellingham, WA: SPIE; 1995. p. 24.

    Chapter  Google Scholar 

  274. Hennig T, Rechmann P, Pilgrim CG, Schwarzmaier H-J, Kaufmann R. Caries selective ablation by pulsed lasers. In: Lasers in orthopedic, dental, and veterinary medicine, Proc SPIE, vol. 1424. Bellingham, WA: SPIE; 1991. p. 99.

    Chapter  Google Scholar 

  275. Rechmann P, Hennig T. Caries selective ablation: first histological examinations. In: Laser surgery: advanced characterization, therapeutics, and systems IV, Proc SPIE, vol. 2128. Bellingham, WA: SPIE; 1994. p. 389.

    Google Scholar 

  276. Harris DM, Goodis HE, White JM, Arcoria CJ, Simon J, Carpenter WM, Fried D, Burkart J, Yessik M, Myers T. Selective ablation of surface enamel caries with a pulsed Nd:YAG laser. Lasers Surg Med. 2002;30(5):342–50.

    Article  Google Scholar 

  277. Sherman DB, Ruben MP, Goldman HM. The application of laser for the spectrochemical analysis of calcified tissues. Ann N Y Acad Sci. 1965;122:767–72.

    Article  PubMed  Google Scholar 

  278. Oraevsky AA, Jacques SL, Pettit GH, Tittel FK, Henry PD. XeCl laser ablation of atherosclerotic aorta: luminescence spectroscopy of ablation products. Lasers Surg Med. 1993;13:168–78.

    Article  PubMed  Google Scholar 

  279. Niemz MH. Investigation and spectral analysis of the plasma-induced ablation mechanism of dental hydroxyapatite. Appl Phys B Lasers Opt. 1994;58:273–81.

    Article  Google Scholar 

  280. Samek, Liska M, Kaiser J, Beddows DC, Telle HH, Kukhlevsky SV. Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials. J Clin Laser Med Surg. 2000;18(6):281–9.

    Article  Google Scholar 

  281. Cheng JY, Fan K, Fried D. Use of a compact fiber optic spectrometer for spectral feedback during the laser ablation of dental hard tissues and restorative materials. In: Peter R, Daniel F, editors. Lasers in dentistry XII, Proc SPIE, vol. 6137. Bellingham, WA: SPIE; 2006. p. 61370F.

    Chapter  Google Scholar 

  282. Alexander R, Fried D. Selective removal of orthodontic composite using 355-nm Q-switched laser pulses. Lasers Surg Med. 2002;30:240–5.

    Article  Google Scholar 

  283. Dumore T, Fried D. Selective ablation of orthodontic composite using sub-microsecond IR laser pulses with optical feedback. Lasers Surg Med. 2000;27(2):103–10.

    Article  Google Scholar 

  284. Lizarelli RFZ, Moriyama LT, Bagnato VS. Ablation of composite resins using Er:YAG laser—comparison with enamel and dentin. Lasers Surg Med. 2003;33(2):132–9.

    Article  Google Scholar 

  285. Louie TM, Sarma AV, Fried D. Selective removal of composite restorative materials using Q-switched 355-nm laser pulses. J Biomed Opt. 2005;10(1):014001.

    Article  Google Scholar 

  286. Smith SC, Walsh LJ, Taverne AA. Removal of orthodontic bonding resin residues by CO2 laser radiation: surface effects. J Clin Laser Med Surg. 1999;17(1):13–8.

    Article  Google Scholar 

  287. Yi I, Chan KH, Tsuji GH, Staninec M, Darling CL, Fried D. Selective removal of esthetic composite restorations with spectral guided laser ablation. In: Lasers in dentistry XXII, Proc SPIE, vol. 9692. Bellingham, WA: SPIE; 2016. p. 96920U.

    Chapter  Google Scholar 

  288. Simon JC, Choi JH, Jang A, Fried D. In vivo spectral guided removal of composite from tooth surfaces with a CO2 laser. Proc SPIE. 2020;11217:112170K.

    Google Scholar 

  289. Jang AT, Chan KH, Fried D. Automated ablation of dental composite using an IR pulsed laser coupled to a plume emission spectral feedback system. Lasers Surg Med. 2017;49(7):658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Eberhard J, Bode K, Hedderich J, Jepsen S. Cavity size difference after caries removal by a fluorescence-controlled Er:YAG laser and by conventional bur treatment. Clin Oral Investig. 2008;12(4):311–8.

    Article  Google Scholar 

  291. Eberhard J, Eisenbeiss AK, Braun A, Hedderich J, Jepsen S. Evaluation of selective caries removal by a fluorescence feedback-controlled Er:YAG laser in vitro. Caries Res. 2005;39(6):496–504.

    Article  PubMed  Google Scholar 

  292. Jepsen S, Acil Y, Peschel T, Kargas K, Eberhard J. Biochemical and morphological analysis of dentin following selective caries removal with a fluorescence-controlled Er:YAG laser. Lasers Surg Med. 2008;40(5):350–7.

    Article  PubMed  Google Scholar 

  293. Fried WA, Chan KH, Fried D, Darling CL. High contrast reflectance imaging of simulated lesions on tooth occlusal surfaces at near-IR wavelengths. Lasers Surg Med. 2013;45(8):533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Kleter GA. Discoloration of dental carious lesions (a review). Arch Oral Biol. 1998;43:629–32.

    Article  PubMed  Google Scholar 

  295. Sarna T, Sealy RC. Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin. Photochem Photobiol. 1984;39:69–74.

    Article  PubMed  Google Scholar 

  296. Fu D, Ye T, Matthews TE, Yurtsever G, Warren WS. Two-color, two-photon, and excited-state absorption microscopy. J Biomed Opt. 2007;12(5):054004.

    Article  PubMed  Google Scholar 

  297. Jones RS, Huynh GD, Jones GC, Fried D. Near-IR transillumination at 1310-nm for the imaging of early dental caries. Opt Express. 2003;11(18):2259–65.

    Article  PubMed  Google Scholar 

  298. Tao YC, Fried D. Near-infrared image-guided laser ablation of dental decay. J Biomed Opt. 2009;14(5):054045.

    Article  PubMed  PubMed Central  Google Scholar 

  299. Chan KH, Hirasuna K, Fried D. Analysis of enamel surface damage after selective laser ablation of composite from tooth surfaces. Photon Lasers Med. 2014;3(1):37–45.

    Article  Google Scholar 

  300. Chan KH, Fried D. Selective removal of demineralization using near infrared cross polarization reflectance and a carbon dioxide laser. Proc SPIE. 2012;8208:82080U.

    Article  Google Scholar 

  301. Badran Z, Demoersman J, Struillou X, Boutigny H, Weiss P, Soueidan A. Laser-induced fluorescence for subgingival calculus detection: scientific rational and clinical application in periodontology. Photomed Laser Surg. 2011;29(9):593–6.

    Article  PubMed  Google Scholar 

  302. Folwaczny M, Heym R, Mehl A, Hickel R. The effectiveness of InGaAsP diode laser radiation to detect subgingival calculus as compared to an explorer. J Periodontol. 2004;75(5):744–9.

    Article  PubMed  Google Scholar 

  303. Krause F, Braun A, Jepsen S, Frentzen M. Detection of subgingival calculus with a novel LED-based optical probe. J Periodontol. 2005;76(7):1202–6.

    Article  PubMed  Google Scholar 

  304. Kurihara E, Koseki T, Gohara K, Nishihara T, Ansai T, Takehara T. Detection of subgingival calculus and dentine caries by laser fluorescence. J Periodontal Res. 2004;39(1):59–65.

    Article  Google Scholar 

  305. Qin YL, Luan XL, Bi LJ, Lu Z, Sheng YQ, Somesfalean G, Zhou CN, Zhang ZG. Real-time detection of dental calculus by blue-LED-induced fluorescence spectroscopy. J Photochem Photobiol B. 2007;87(2):88–94.

    Article  PubMed  Google Scholar 

  306. Rams TE, Alwaqyan AY. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces. Saudi Dent J. 2017;29(4):171–8.

    Article  PubMed Central  Google Scholar 

  307. Shakibaie F, Walsh LJ. Laser fluorescence detection of subgingival calculus using the DIAGNOdent Classic versus periodontal probing. Lasers Med Sci. 2016;31(8):1621–6.

    Article  PubMed  Google Scholar 

  308. Tung OH, Lee SY, Lai YL, Chen HF. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy. J Biomed Opt. 2011;16(6):066017.

    Article  Google Scholar 

  309. Tsuda H, Jongebloed WL, Stokroos I, Arends J. A micro-Raman spectroscopic study of hydrazine-treated human dental calculus. Scanning Microsc. 1996;10(4):1015–23; discussion 1023–4.

    Google Scholar 

  310. Huminicki A, Dong C, Cleghorn B, Sowa M, Hewko M, Choo-Smith LP. Determining the effect of calculus, hypocalcification, and stain on using optical coherence tomography and polarized Raman spectroscopy for detecting white spot lesions. Int J Dent. 2010;2010:879252.

    Article  PubMed Central  Google Scholar 

  311. Yan R, Chan KH, Tom H, Simon JC, Darling CL, Fried D. Selective removal of dental caries with a diode-pumped Er:YAG laser. In: Lasers in dentistry XX, Proc SPIE, vol. 9306. Bellingham, WA: SPIE; 2015. p. 93060O.

    Google Scholar 

  312. Stock K, Diebolder R, Hausladen F, Hibst R. Efficient bone cutting with the novel diode pumped Er:YAG laser system: in vitro investigation and optimization of the treatment parameters. Proc SPIE. 2014;8926:89260P.

    Google Scholar 

  313. Stock K, Diebolder R, Hausladen F, Wurm H, Lorenz S, Hibst R. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for bone surgery. In: Photonic therapeutics and diagnostics IX, Proc SPIE, vol. 8565. Bellingham, WA: SPIE; 2013. p. 85650D.

    Google Scholar 

  314. Stock K, Hausladen F, Hibst R. Investigations on the potential of a novel diode pumped Er:YAG laser system for dental applications. Proc SPIE. 2012;8208:82080D.

    Article  Google Scholar 

  315. Simon JC, Kwok JW, Vinculado F, Fried D. Computer-controlled CO2 laser ablation system for cone-beam computed tomography and digital image guided endodontic access: a pilot study. J Endod. 2021;47:1445–52.

    Article  PubMed Central  Google Scholar 

  316. Migitaa M, Kamiyama I, Matsuzaka K, Nakamura A, Souta T, Aizawa K, Shibahara T. Photodynamic diagnosis of oral carcinoma using talaporfin sodium and a hyperspectral imaging system: an animal study. Asian J Oral Maxillofac Surg. 2010;22(3):126–32.

    Article  Google Scholar 

  317. Chang CJ, Lin MS, Hwang PS, Cheng SMH. Topical application of Photofrin® for oral neoplasms in animal. Opt Quant Electron. 2005;37:1353–65.

    Article  Google Scholar 

  318. Riva C, Ross B, Benedek GB. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol. 1972;11:936–44.

    PubMed  Google Scholar 

  319. Gazelius B, Olgart L, Edwall B, Edwall L. Non-invasive recording of blood flow in human dental pulp. Endod Dent Traumatol. 1986;2:219–21.

    Article  Google Scholar 

  320. Olgart L, Gazelius B, Lindh-Stromberg U. Laser Doppler flowmetry in assessing vitality in luxated permanent teeth. Int Endod J. 1988;21:300–6.

    Article  PubMed  Google Scholar 

  321. Andreasen FM, Andreasen JO. Luxation injuries. In: Andreasen JO, Andreasen FM, editors. Textbook and color atlas of traumatic injuries to the teeth. 3rd ed. Copenhagen: Munksgaard; 1994. p. 353–4.

    Google Scholar 

  322. Ebihara A, Tokita Y, Izawa T, Suda H. Pulpal blood flow assessed by laser Doppler flowmetry in a tooth with a horizontal root fracture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81:229–33.

    Article  Google Scholar 

  323. Ikawa M, Komatsu H, Ikawa K, Mayanagi H, Shimauchi H. Age-related changes in the human pulpal blood flow measured by laser Doppler flowmetry. Dent Traumatol. 2003;19:36–40.

    Article  Google Scholar 

  324. Babacan H, Doruk C, Bicakci AA. Pulpal blood flow changes due to rapid maxillary expansion. Angle Orthod. 2010;80:1136–40.

    Article  PubMed Central  Google Scholar 

  325. Cho JJ, Efstratiadis S, Hasselgren G. Pulp vitality after rapid palatal expansion. Am J Orthod Dentofac Orthop. 2010;137:254–8.

    Article  Google Scholar 

  326. Chen E, Goonewardene M, Abbott P. Monitoring dental pulp sensibility and blood flow in patients receiving mandibular orthognathic surgery. Int Endod J. 2012;45:215–23.

    Article  PubMed  Google Scholar 

  327. Emshoff R, Kranewitter R, Norer B. Effect of Le Fort I osteotomy on maxillary tooth-type-related pulpal blood-flow characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:88–90.

    Article  PubMed  Google Scholar 

  328. Emshoff R, Kranewitter R, Gerhard S, Norer B, Hell B. Effect of segmental Le Fort I osteotomy on maxillary tooth type-related pulpal blood-flow characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:749–52.

    Article  PubMed  Google Scholar 

  329. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont. 1998;11:491–501.

    PubMed  Google Scholar 

  330. Riecke B, Heiland M, Hothan A, Morlock M, Amling M, Blake FA. Primary implant stability after maxillary sinus augmentation with autogenous mesenchymal stem cells: a biomechanical evaluation in rabbits. Clin Oral Implants Res. 2011;22:1242–6.

    Article  PubMed  Google Scholar 

  331. Jafarzadeh H. Laser Doppler flowmetry in endodontics: a review. Int Endod J. 2009;42:476–90.

    Article  PubMed  Google Scholar 

  332. Polat S, Er K, Polat NT. Penetration depth of laser Doppler flowmetry beam in teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:125–9.

    Article  PubMed  Google Scholar 

  333. Wilder-Smith PEEB. A new method for the non-invasive measurement of pulpal blood flow. Int Endod J. 1988;21:307–12.

    Article  Google Scholar 

  334. Evans D, Reid J, Strang R, Stirrups D. A comparison of laser Doppler flowmetry with other methods of assessing the vitality of traumatised anterior teeth. Endod Dent Traumatol. 1999;15:284–90.

    Article  PubMed  Google Scholar 

  335. Roeykens HJJ, Van Maele GOG, De Moor RJC, Martens LCM. Reliability of laser Doppler flowmetry in a 2-probe assessment of pulpal blood flow. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:742–8.

    Article  Google Scholar 

  336. Roebuck EM, Evans DJP, Stirrups D, Strang R. The effect of wavelength, bandwidth, and probe design and position on assessing the vitality of anterior teeth with laser Doppler flowmetry. Int J Paediatr Dent. 2000;10:213–20.

    Article  Google Scholar 

  337. Limjeerajarus C. Laser Doppler flowmetry: basic principle, current clinical and research applications in dentistry. CU Dent J. 2014;37:123–36.

    Google Scholar 

  338. Del Giudice E, Doglia S, Milani M. Order and structures in living systems. In: Ross Adey W, Lawrence AF, editors. Nonlinear electrodynamics in biological systems. New York: Plenum Press; 1983. p. 477–88.

    Google Scholar 

  339. Adey WR. Frequency and power windowing in tissue interactions with weak electromagnetic fields. Proc IEEE. 1980;63(1):119–25.

    Article  Google Scholar 

  340. Venz S, Dickens B. NIR-spectroscopic investigation of water sorption characteristics of dental resins and composites. J Biomed Mater Res. 1991;25:1231–48.

    Article  PubMed  Google Scholar 

Further Reading

  • Fejerskov O, Kidd E. Dental caries: the disease and its clinical management. John Wiley & Sons; 2009.

    Google Scholar 

  • How a Raman instrument works. http://nicolet.com/theory.html#Raman.

  • Kincade K. Raman spectroscopy enhances in vivo diagnosis. Laser Focus World, Jul 1998. p. 83–91.

    Google Scholar 

  • Minet O, Müller GJ, Beuthan J. Selected papers on optical tomography: fundamentals and applications in medicine, SPIE milestone series, vol. MS147. SPIE Optical Engineering Press; 1998. ISBN: 0819428779, 9780819428776.

    Google Scholar 

Download references

Acknowledgment

The contributor gratefully acknowledges the support of Dr. Steven Parker, Professor (a.c) University of Genova, Italy, Dr. Donald Coluzzi, Professor, University of San Francisco at California, U.S.A., Dr. Stefano Benedicenti, Dean DiSC, University of Genova, Mirza Hasanuzzaman, Associate Professor, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh, and Daniel Mathews Muruppel, Project Leader, Kuwait Airways Corporation, Kuwait, toward his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Mathews Muruppel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muruppel, A.M., Fried, D. (2023). Laser Assisted Diagnostics. In: Coluzzi, D.J., Parker, S.P.A. (eds) Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-43338-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43338-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43337-5

  • Online ISBN: 978-3-031-43338-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics