Skip to main content

Computational Complexity of k-Stable Matchings

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2023)

Abstract

We study deviations by a group of agents in the three main types of matching markets: the house allocation, the marriage, and the roommates models. For a given instance, we call a matching k-stable if no other matching exists that is more beneficial to at least k out of the n agents. The concept generalizes the recently studied majority stability (Thakur, 2021). We prove that whereas the verification of k-stability for a given matching is polynomial-time solvable in all three models, the complexity of deciding whether a k-stable matching exists depends on \(\frac{k}{n}\) and is characteristic to each model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30551-4_3

    Chapter  Google Scholar 

  • Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM J. Comput. 37, 1030–1045 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Aziz, H., Brandt, F., Harrenstein, P.: Pareto optimality in coalition formation. Games Econ. Behav. 82, 562–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Aziz, H., Chen, J., Gaspers, S., Sun, Z.: Stability and Pareto optimality in refugee allocation matchings. In: AAMAS’18, pp. 964–972 (2018)

    Google Scholar 

  • Aziz, H., Csáji, G., Cseh, A.: Computational complexity of \(k\)-stable matchings. arXiv preprint arXiv:2307.03794 (2023)

  • Balinski, M., Sönmez, T.: A tale of two mechanisms: student placement. J. Econ. Theory 84(1), 73–94 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Balliu, A., Flammini, M., Melideo, G., Olivetti, D.: On Pareto optimality in social distance games. Artif. Intell. 312, 103768 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, S., Hoefer, M., Huang, C.-C., Kavitha, T., Wagner, L.: Maintaining near-popular matchings. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 504–515. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_40

    Chapter  Google Scholar 

  • Biró, P., Gudmundsson, J.: Complexity of finding Pareto-efficient allocations of highest welfare. Eur. J. Oper. Res. (2020)

    Google Scholar 

  • Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 97–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13073-1_10

    Chapter  MATH  Google Scholar 

  • Bogomolnaia, A., Moulin, H.: Random matching under dichotomous preferences. Econometrica 72(1), 257–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Braun, S., Dwenger, N., Kübler, D.: Telling the truth may not pay off: an empirical study of centralized university admissions in Germany. B.E. J. Econ. Anal. Policy 10, article 22 (2010)

    Google Scholar 

  • Bullinger, M.: Pareto-optimality in cardinal hedonic games. In: AAMAS’20, pp. 213–221 (2020)

    Google Scholar 

  • Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Mourtos, I., Potpinková, E.: Pareto optimality in many-to-many matching problems. Discret. Optim. 14, 160–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Cechlárová, K., et al.: Pareto optimal matchings in many-to-many markets with ties. Theory Comput. Syst. 59(4), 700–721 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., Sönmez, T.: Improving efficiency of on-campus housing: an experimental study. Am. Econ. Rev. 92, 1669–1686 (2002)

    Article  Google Scholar 

  • Condorcet, M.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. L’Imprimerie Royale (1785)

    Google Scholar 

  • Cseh, Á.: Popular matchings. Trends Comput. Soc. Choice 105(3) (2017)

    Google Scholar 

  • Cseh, Á., Kavitha, T.: Popular matchings in complete graphs. Algorithmica 83(5), 1493–1523 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Cseh, Á., Huang, C.-C., Kavitha, T.: Popular matchings with two-sided preferences and one-sided ties. SIAM J. Discret. Math. 31(4), 2348–2377 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Darmann, A.: Popular spanning trees. Int. J. Found. Comput. Sci. 24(05), 655–677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Darmann, A.: A social choice approach to ordinal group activity selection. Math. Soc. Sci. 93, 57–66 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott, M., Nickel, S.: On the number of criteria needed to decide Pareto optimality. Math. Methods Oper. Res. 55(3), 329–345 (2002). https://doi.org/10.1007/s001860200207

    Article  MathSciNet  MATH  Google Scholar 

  • Elkind, E., Fanelli, A., Flammini, M.: Price of Pareto optimality in hedonic games. Artif. Intell. 288, 103357 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Faenza, Y., Kavitha, T., Powers, V., Zhang, X.: Popular matchings and limits to tractability. In: Proceedings of SODA ’19: the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2790–2809. ACM-SIAM (2019)

    Google Scholar 

  • Florenzano, M., Gourdel, P., Jofré, A.: Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies. Econ. Theor. 29, 549–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow, H.: An efficient implementations of Edmonds’ algorithm for maximum matching on graphs. J. ACM 23(2), 221–234 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Gai, A.-T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.: Acyclic preference systems in P2P networks. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 825–834. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74466-5_88

    Chapter  Google Scholar 

  • Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Monthly 69, 9–15 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav. Sci. 20, 166–173 (1975)

    Article  Google Scholar 

  • Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  • Gupta, S., Misra, P., Saurabh, S., Zehavi, M.: Popular matching in roommates setting is NP-hard. ACM Trans. Comput. Theory 13(2) (2021). ISSN 1942-3454

    Google Scholar 

  • Hopcroft, J., Karp, R.: A \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, C.-C., Kavitha, T.: Popular matchings in the stable marriage problem. Inf. Comput. 222, 180–194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, C.-C., Kavitha, T.: Near-popular matchings in the roommates problem. SIAM J. Discret. Math. 27(1), 43–62 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, C.-C., Kavitha, T.: Popularity, mixed matchings, and self-duality. Math. Oper. Res. 46(2), 405–427 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded unpopularity matchings. Algorithmica 61(3), 738–757 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algorithms 6, 577–595 (1985)

    Google Scholar 

  • Kavitha, T.: A size-popularity tradeoff in the stable marriage problem. SIAM J. Comput. 43, 52–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. Theoret. Comput. Sci. 412, 2679–2690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kavitha, T., Király, T., Matuschke, J., Schlotter, I., Schmidt-Kraepelin, U.: Popular branchings and their dual certificates. Math. Program. 192(1), 567–595 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Kavitha, T., Király, T., Matuschke, J., Schlotter, I., Schmidt-Kraepelin, U.: The popular assignment problem: when cardinality is more important than popularity. In: SODA ’22: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 103–123. SIAM (2022b

    Google Scholar 

  • Kraiczy, S., Cseh, Á., Manlove, D.: On weakly and strongly popular rankings. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, Richland, SC, pp. 1563–1565. International Foundation for Autonomous Agents and Multiagent Systems (2021). ISBN 9781450383073

    Google Scholar 

  • Manlove, D.F., Algorithmics of Matching Under Preferences. World Scientific (2013)

    Google Scholar 

  • McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_51

    Chapter  Google Scholar 

  • Micali, S., Vazirani, V.: An \(O(\sqrt{|V|} \cdot |E|)\) algorithm for finding maximum matching in general graphs. In: Proceedings of FOCS ’80: The 21st Annual IEEE Symposium on Foundations of Computer Science, pp. 17–27. IEEE Computer Society (1980)

    Google Scholar 

  • Perach, N., Polak, J., Rothblum, U.G.: A stable matching model with an entrance criterion applied to the assignment of students to dormitories at the Technion. Internat. J. Game Theory 36, 519–535 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Peters, D.: Complexity of hedonic games with dichotomous preferences. Proceedings AAAI Conf. Artif. Intell. 30, 1 (2016)

    Google Scholar 

  • Roth, A.E.: Incentive compatibility in a market with indivisible goods. Econ. Lett. 9, 127–132 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Econometric Society Monographs, vol. 18. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  • Ruangwises, S., Itoh, T.: Unpopularity factor in the marriage and roommates problems. Theory Comput. Syst. 65(3), 579–592 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, J.J.: A necessary and sufficient condition for the existence of a complete stable matching. J. Algorithms 12(1), 154–178 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Thakur, A.: Combining social choice and matching theory to understand institutional stability. In: The 25th Annual ISNIE / SIOE Conference. Society for Institutional and Organizational Economics (2021)

    Google Scholar 

  • van Zuylen, A., Schalekamp, F., Williamson, D.: Popular ranking. Discret. Appl. Math. 165, 312–316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Warburton, A.R.: Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives. J. Optim. Theory Appl. 40, 537–557 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Barton E. Lee for drawing our attention to the concept of majority stability and for producing thought-provoking example instances. We also thank the reviewers of the paper for their suggestions that helped improving the presentation of the paper. Haris Aziz acknowledges the support from NSF-CSIRO grant on ‘Fair Sequential Collective Decision-Making’. Gergely Csáji acknowledges the financial support by the Hungarian Academy of Sciences, Momentum Grant No. LP2021-1/2021, and by the Hungarian Scientific Research Fund, OTKA, Grant No. K143858. Ágnes Cseh’s work was supported by OTKA grant K128611 and the János Bolyai Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Cseh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aziz, H., Csáji, G., Cseh, Á. (2023). Computational Complexity of k-Stable Matchings. In: Deligkas, A., Filos-Ratsikas, A. (eds) Algorithmic Game Theory. SAGT 2023. Lecture Notes in Computer Science, vol 14238. Springer, Cham. https://doi.org/10.1007/978-3-031-43254-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43254-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43253-8

  • Online ISBN: 978-3-031-43254-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics