Abstract
One of the most prevalent types of malignant cancers is bladder cancer (BC), which also happens to be the most widespread genitourinary cancer globally. The development and progression of BC are influenced significantly by both genetic and environmental factors. The objective of this study was to identify biomarker genes using three approaches: statistical analysis, biological packages, and machine learning and ensure that the machine learning is a robust way to identify the differential Gene expression. The study utilized GSE7476 expression profiles, which were obtained by downloading data from the Gene Expression Omnibus (GEO) database. ElasticNet was used as one of the methods to identify biomarker genes. The accuracy of the results was assessed by testing on unseen samples, and a perfect accuracy of 100% was achieved. Additionally, the identified biomarker genes were further analyzed using the Go ontology pathway to understand their functional significance and potential involvement in biological processes. Lastly, we compared the pathways associated with the ElasticNet method to those of state-of-the-art methods. This comprehensive approach provides a robust and reliable method for biomarker identification in the context of bladder cancer research using machine learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antoni, S., Ferlay, J., Soerjomataram, I., Znaor, A., Jemal, A., Bray, F.: Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017)
Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., Jemal, A.: Global cancer statistics. CA Cancer J. Clin. 65, 87–108 (2015)
Pinto, I.G.: Systemic therapy in bladder cancer. Indian J. Urol. 33, 118–126 (2017)
Burger, M., et al.: Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63, 234–241 (2013)
Liu, S., et al.: The evaluation of the risk factors for non-muscle invasive bladder cancer (NMIBC) recurrence after transurethral resection (TURBt) in Chinese population. PLOS ONE 10(4), e0123617 (2015)
Alfred, W.J., et al.: Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 71(3), 462–475 (2017)
Clark, P.E., et al.: NCCN guidelines insights: bladder cancer, version 2.2016. J. Nat. Compr. Canc. Netw. 14(10), 1213–1224 (2016)
Kukreja, J.B., Shah, J.B.: Advances in surgical management of muscle invasive bladder cancer. Indian J. Urol. 33(2), 106 (2017). https://doi.org/10.4103/0970-1591.203416
Ghaleb, M.S., Ebied, H.M., Tolba, M.F.: Lung Cancer stages classification based on differential gene expression. In: Hassanien, A.E., et al. (eds.) The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023, pp. 272–281. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-27762-7_26
Lu, X., Zhang, X.: The effect of GeneChip gene definitions on the microarray study of cancers. BioEssays 28(7), 739–746 (2006). https://doi.org/10.1002/bies.20433
Zhang, Y., Deng, Q., Liang, W., Zou, X.: An efficient feature selection strategy based on multiple support vector machine technology with gene expression data. BioMed Res. Int. 2018, 1–11 (2018). https://doi.org/10.1155/2018/7538204
Lee, T., Lee, H.: Prediction of Alzheimer’s disease using blood gene expression data. Sci Rep. 10(1), 3485 (2006). https://doi.org/10.1038/s41598-020-60595-1. PMID: 32103140; PMCID: PMC7044318
Rukhsar, L., Bangyal, W.H., Ali Khan, M.S., Ag Ibrahim, A.A., Nisar, K., Rawat, D.B.: Analyzing RNA-seq gene expression data using deep learning approaches for cancer classification. Appl. Sci. 12, 1850 (1850). https://doi.org/10.3390/app12041850
Siavoshi, A., Taghizadeh, M., Dookhe, E., Piran, M.: Gene expression profiles and pathway enrichment analysis to identification of differentially expressed gene and signaling pathways in epithelial ovarian cancer based on high-throughput RNA-seq data. Genomics 114(1), 161–170 (2022)
Zararsiz, G., Goksuluk, D., Korkmaz, S., Eldem, V., Goksuluk, I.P., Unver, T.: MLSeq Machine Learning Interface to RNA-Seq Data. https://bioconductor.org/packages/release/bioc/vignettes/MLSeq/inst/doc/MLSeq.pdf. Accessed on 1 July 2021
Waseem, Q., Alshamrani, S., Nisar, K., Din, W.W., Alghamdi, A.: Future technology: software-defined network (SDN) forensic. Symmetry 13, 767 (2021)
Wesolowski, S., Birtwistle, M.R., Rempala, G.A.: A comparison of methods for rna-seq differential expression analysis and a new empirical bayes approach. Biosensors 3, 238–258 (2013)
Conesa, A., et al.: A survey of best practices for RNA-seq data analysis. Genome Biol 17, 13 (2016)
Urda, D., Montes-Torres, J., Moreno, F., Franco, L., Jerez, J.M.: Deep Learning to Analyze RNA-Seq Gene Expression Data. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 50–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_5
Ciaburro, G., Iannace, G.: Machine-learning-based methods for acoustic emission testing: a review. Appl. Sci. 12, 10476 (2022). https://doi.org/10.3390/app122010476
Xu, C., Jackson, S.A.: Machine learning and complex biological data. Genome Biol. 20, 76 (2019). https://doi.org/10.1186/s13059-019-1689-0
Jiang, P., Liu, X.S.: Big data mining yields novel insights on cancer. Nat. Genet. 47(2), 103–104 (2015). https://doi.org/10.1038/ng.3205
Ritchie, M.E., et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015). https://doi.org/10.1093/nar/gkv007
Haynes, W.: Benjamini–hochberg method. In: Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H. (eds.) Encyclopedia of Systems Biology, pp. 78–78. Springer New York, New York, NY (2013). https://doi.org/10.1007/978-1-4419-9863-7_1215
De Mol, C., De Vito, E., Rosasco, L.: Elastic-net regularization in learning theory. J. Complexity 25(2), 201–230 (2009). https://doi.org/10.1016/j.jco.2009.01.002
Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102(43), 15545–15550 (2005). https://doi.org/10.1073/pnas.0506580102
Chen, E.Y., Tan, C.M., Kou, Y., et al.: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128
Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Image Retrieval based on self-organizing feature map and map and Multilayer perceptron Neural Networks Classifier. In: Ninth International Conference on Intelligent Computing and Information science (ICICS), pp. 189–193. Cairo, Egypt (2019)
Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: COVID-19 x-rays model detection using convolution neural network. In: Hassanien, A.E., Haqiq, A., Tonellato, P.J., Bellatreche, L., Goundar, S., Azar, A.T., Sabir, E., Bouzidi, D. (eds.) AICV 2021. AISC, vol. 1377, pp. 3–11. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76346-6_1
Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Content based image retrieval based on convolutional Neural Network. In: Tenth International Conference on Intelligent Computing and Information science (ICICS), pp. 149–153. Cairo, Egypt (2021)
Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Weather classification using fusion of deep convolutional neural networks and traditional classification methods. Int. J. Intell. Comput. Inform. Sci. 22, 84–96 (2022)
Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Image retrieval based on deep learning. J. Syst. Manag. Sci. 12, 477–496 (2022)
Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Content-based image retrieval using fused convolutional neural networks. In: Hassanien, A.E., Snášel, V., Tang, M., Sung, T.-W., Chang, K.-C. (eds.) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022, pp. 260–270. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-20601-6_24
Tang, F., He, Z., Lei, H., Chen, Y., Lu, Z., Zeng, G., Wang, H.: Identification of differentially expressed genes and biological pathways in bladder cancer. Mol. Med. Rep. 17(5), 6425–6434 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ghaleb, M.S., Ebied, H.M., Tolba, M.F. (2023). Bladder Cancer Microarray Analysis and Biomarker Discovery Using Machine Learning. In: Hassanien, A., Rizk, R.Y., Pamucar, D., Darwish, A., Chang, KC. (eds) Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023. AISI 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-031-43247-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-43247-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43246-0
Online ISBN: 978-3-031-43247-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)