Skip to main content

Bladder Cancer Microarray Analysis and Biomarker Discovery Using Machine Learning

  • Conference paper
  • First Online:
Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023 (AISI 2023)

Abstract

One of the most prevalent types of malignant cancers is bladder cancer (BC), which also happens to be the most widespread genitourinary cancer globally. The development and progression of BC are influenced significantly by both genetic and environmental factors. The objective of this study was to identify biomarker genes using three approaches: statistical analysis, biological packages, and machine learning and ensure that the machine learning is a robust way to identify the differential Gene expression. The study utilized GSE7476 expression profiles, which were obtained by downloading data from the Gene Expression Omnibus (GEO) database. ElasticNet was used as one of the methods to identify biomarker genes. The accuracy of the results was assessed by testing on unseen samples, and a perfect accuracy of 100% was achieved. Additionally, the identified biomarker genes were further analyzed using the Go ontology pathway to understand their functional significance and potential involvement in biological processes. Lastly, we compared the pathways associated with the ElasticNet method to those of state-of-the-art methods. This comprehensive approach provides a robust and reliable method for biomarker identification in the context of bladder cancer research using machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoni, S., Ferlay, J., Soerjomataram, I., Znaor, A., Jemal, A., Bray, F.: Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017)

    Article  Google Scholar 

  2. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., Jemal, A.: Global cancer statistics. CA Cancer J. Clin. 65, 87–108 (2015)

    Article  Google Scholar 

  3. Pinto, I.G.: Systemic therapy in bladder cancer. Indian J. Urol. 33, 118–126 (2017)

    Article  Google Scholar 

  4. Burger, M., et al.: Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63, 234–241 (2013)

    Article  Google Scholar 

  5. Liu, S., et al.: The evaluation of the risk factors for non-muscle invasive bladder cancer (NMIBC) recurrence after transurethral resection (TURBt) in Chinese population. PLOS ONE 10(4), e0123617 (2015)

    Article  Google Scholar 

  6. Alfred, W.J., et al.: Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 71(3), 462–475 (2017)

    Article  Google Scholar 

  7. Clark, P.E., et al.: NCCN guidelines insights: bladder cancer, version 2.2016. J. Nat. Compr. Canc. Netw. 14(10), 1213–1224 (2016)

    Article  Google Scholar 

  8. Kukreja, J.B., Shah, J.B.: Advances in surgical management of muscle invasive bladder cancer. Indian J. Urol. 33(2), 106 (2017). https://doi.org/10.4103/0970-1591.203416

    Article  Google Scholar 

  9. Ghaleb, M.S., Ebied, H.M., Tolba, M.F.: Lung Cancer stages classification based on differential gene expression. In: Hassanien, A.E., et al. (eds.) The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023, pp. 272–281. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-27762-7_26

    Chapter  Google Scholar 

  10. Lu, X., Zhang, X.: The effect of GeneChip gene definitions on the microarray study of cancers. BioEssays 28(7), 739–746 (2006). https://doi.org/10.1002/bies.20433

    Article  Google Scholar 

  11. Zhang, Y., Deng, Q., Liang, W., Zou, X.: An efficient feature selection strategy based on multiple support vector machine technology with gene expression data. BioMed Res. Int. 2018, 1–11 (2018). https://doi.org/10.1155/2018/7538204

    Article  Google Scholar 

  12. Lee, T., Lee, H.: Prediction of Alzheimer’s disease using blood gene expression data. Sci Rep. 10(1), 3485 (2006). https://doi.org/10.1038/s41598-020-60595-1. PMID: 32103140; PMCID: PMC7044318

    Article  Google Scholar 

  13. Rukhsar, L., Bangyal, W.H., Ali Khan, M.S., Ag Ibrahim, A.A., Nisar, K., Rawat, D.B.: Analyzing RNA-seq gene expression data using deep learning approaches for cancer classification. Appl. Sci. 12, 1850 (1850). https://doi.org/10.3390/app12041850

    Article  Google Scholar 

  14. Siavoshi, A., Taghizadeh, M., Dookhe, E., Piran, M.: Gene expression profiles and pathway enrichment analysis to identification of differentially expressed gene and signaling pathways in epithelial ovarian cancer based on high-throughput RNA-seq data. Genomics 114(1), 161–170 (2022)

    Article  Google Scholar 

  15. Zararsiz, G., Goksuluk, D., Korkmaz, S., Eldem, V., Goksuluk, I.P., Unver, T.: MLSeq Machine Learning Interface to RNA-Seq Data. https://bioconductor.org/packages/release/bioc/vignettes/MLSeq/inst/doc/MLSeq.pdf. Accessed on 1 July 2021

  16. Waseem, Q., Alshamrani, S., Nisar, K., Din, W.W., Alghamdi, A.: Future technology: software-defined network (SDN) forensic. Symmetry 13, 767 (2021)

    Article  Google Scholar 

  17. Wesolowski, S., Birtwistle, M.R., Rempala, G.A.: A comparison of methods for rna-seq differential expression analysis and a new empirical bayes approach. Biosensors 3, 238–258 (2013)

    Article  Google Scholar 

  18. Conesa, A., et al.: A survey of best practices for RNA-seq data analysis. Genome Biol 17, 13 (2016)

    Article  Google Scholar 

  19. Urda, D., Montes-Torres, J., Moreno, F., Franco, L., Jerez, J.M.: Deep Learning to Analyze RNA-Seq Gene Expression Data. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 50–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_5

    Chapter  Google Scholar 

  20. Ciaburro, G., Iannace, G.: Machine-learning-based methods for acoustic emission testing: a review. Appl. Sci. 12, 10476 (2022). https://doi.org/10.3390/app122010476

    Article  Google Scholar 

  21. Xu, C., Jackson, S.A.: Machine learning and complex biological data. Genome Biol. 20, 76 (2019). https://doi.org/10.1186/s13059-019-1689-0

    Article  Google Scholar 

  22. Jiang, P., Liu, X.S.: Big data mining yields novel insights on cancer. Nat. Genet. 47(2), 103–104 (2015). https://doi.org/10.1038/ng.3205

    Article  MathSciNet  Google Scholar 

  23. Ritchie, M.E., et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015). https://doi.org/10.1093/nar/gkv007

    Article  Google Scholar 

  24. Haynes, W.: Benjamini–hochberg method. In: Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H. (eds.) Encyclopedia of Systems Biology, pp. 78–78. Springer New York, New York, NY (2013). https://doi.org/10.1007/978-1-4419-9863-7_1215

    Chapter  Google Scholar 

  25. De Mol, C., De Vito, E., Rosasco, L.: Elastic-net regularization in learning theory. J. Complexity 25(2), 201–230 (2009). https://doi.org/10.1016/j.jco.2009.01.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102(43), 15545–15550 (2005). https://doi.org/10.1073/pnas.0506580102

    Article  Google Scholar 

  27. Chen, E.Y., Tan, C.M., Kou, Y., et al.: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013). https://doi.org/10.1186/1471-2105-14-128

    Article  Google Scholar 

  28. Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Image Retrieval based on self-organizing feature map and map and Multilayer perceptron Neural Networks Classifier. In: Ninth International Conference on Intelligent Computing and Information science (ICICS), pp. 189–193. Cairo, Egypt (2019)

    Google Scholar 

  29. Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: COVID-19 x-rays model detection using convolution neural network. In: Hassanien, A.E., Haqiq, A., Tonellato, P.J., Bellatreche, L., Goundar, S., Azar, A.T., Sabir, E., Bouzidi, D. (eds.) AICV 2021. AISC, vol. 1377, pp. 3–11. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76346-6_1

    Chapter  Google Scholar 

  30. Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Content based image retrieval based on convolutional Neural Network. In: Tenth International Conference on Intelligent Computing and Information science (ICICS), pp. 149–153. Cairo, Egypt (2021)

    Google Scholar 

  31. Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Weather classification using fusion of deep convolutional neural networks and traditional classification methods. Int. J. Intell. Comput. Inform. Sci. 22, 84–96 (2022)

    Google Scholar 

  32. Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Image retrieval based on deep learning. J. Syst. Manag. Sci. 12, 477–496 (2022)

    Google Scholar 

  33. Ghaleb, M.S., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Content-based image retrieval using fused convolutional neural networks. In: Hassanien, A.E., Snášel, V., Tang, M., Sung, T.-W., Chang, K.-C. (eds.) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022, pp. 260–270. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-20601-6_24

    Chapter  Google Scholar 

  34. Tang, F., He, Z., Lei, H., Chen, Y., Lu, Z., Zeng, G., Wang, H.: Identification of differentially expressed genes and biological pathways in bladder cancer. Mol. Med. Rep. 17(5), 6425–6434 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshira S. Ghaleb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghaleb, M.S., Ebied, H.M., Tolba, M.F. (2023). Bladder Cancer Microarray Analysis and Biomarker Discovery Using Machine Learning. In: Hassanien, A., Rizk, R.Y., Pamucar, D., Darwish, A., Chang, KC. (eds) Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023. AISI 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-031-43247-7_25

Download citation

Publish with us

Policies and ethics