Skip to main content

An Unsupervised Learning Approach to Resolve Phenotype to Genotype Mapping in Budding Yeasts Vacuoles

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

The relationship between the genotype, the set of instructions encoded into a genome, and the phenotype, the macroscopic realization of those instructions, has not been fully explored. This is mostly due to the general absence of tools capable of uncovering this relationship. In this work, we develop an unsupervised learning framework relating changes in cellular morphology to genetic modifications. We focus on yeast organelles called vacuoles, which are cellular compartments that vary in size and shape as a response to various stimuli. Our approach can be applied extensively for live fluorescence image analysis, potentially unveiling the basic principles relating genotypic variation to vacuole morphology in yeast cells. This can, in turn, be a first step for the inference of cell design principles of cellular organelles with a desired morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adadi, A.: A survey on data-efficient algorithms in big data era. J. Big Data 8(1), 24 (2021). https://doi.org/10.1186/s40537-021-00419-9

    Article  Google Scholar 

  2. Alfano, P.D., Rando, M., Letizia, M., Odone, F., Rosasco, L., Pastore, V.P.: Efficient unsupervised learning for plankton images (2022). https://doi.org/10.48550/ARXIV.2209.06726

  3. Bezdek, J.C.: Numerical taxonomy with fuzzy sets. J. Math. Biol. 1(1), 57–71 (1974). https://doi.org/10.1007/BF02339490

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-0450-1

    Book  MATH  Google Scholar 

  5. Bianco, S., Chan, Y.H.M., Marshall, W.F.: Towards computer-aided design of cellular structure. Phys. Biol. 17(2), 023001 (2020). https://doi.org/10.1088/1478-3975/ab6d43

    Article  Google Scholar 

  6. Chan, Y.H.M., Marshall, W.F.: Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates. Biophys. J. 106(9), 1986–1996 (2014). https://doi.org/10.1016/j.bpj.2014.03.014

    Article  Google Scholar 

  7. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  9. Gustafsdottir, S.M., et al.: Multiplex cytological profiling assay to measure diverse cellular states. PloS One 8(12), e80999 (2013)

    Article  Google Scholar 

  10. Haralick, R.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979). https://doi.org/10.1109/PROC.1979.11328

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  14. Huang, Z., Leng, J.: Analysis of hu’s moment invariants on image scaling and rotation, vol. 7, pp. 7–476 (2010). https://doi.org/10.1109/ICCET.2010.5485542

  15. Huh, M., Agrawal, P., Efros, A.A.: What makes imagenet good for transfer learning? arXiv preprint arXiv:1608.08614 (2016)

  16. Maracani, A., Pastore, V.P., Natale, L., Rosasco, L., Odone, F.: In-domain versus out-of-domain transfer learning in plankton image classification. Sci. Rep. 13(1), 10443 (2023)

    Article  Google Scholar 

  17. Mattiazzi Usaj, M., et al.: Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability. Molec. Syst. Biol. 16(2), e9243 (2020). https://doi.org/10.15252/msb.20199243

  18. Moshkov, N., et al.: Predicting compound activity from phenotypic profiles and chemical structures. Nat. Commun. 14(1), 1967 (2023)

    Article  Google Scholar 

  19. Pastore, V.P., Zimmerman, T., Biswas, S.K., Bianco, S.: Establishing the baseline for using plankton as biosensor. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII, vol. 10881, p. 108810H. International Society for Optics and Photonics (2019)

    Google Scholar 

  20. Pastore, V.P., Zimmerman, T.G., Biswas, S.K., Bianco, S.: Annotation-free learning of plankton for classification and anomaly detection. Sci. Rep. 10(1), 12142 (2020). https://doi.org/10.1038/s41598-020-68662-3

    Article  Google Scholar 

  21. Pastore, V.P., Megiddo, N., Bianco, S.: An anomaly detection approach for plankton species discovery. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022. LNCS, pp. 599–609. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_50

    Chapter  Google Scholar 

  22. Rohban, M.H., et al.: Systematic morphological profiling of human gene and allele function via cell painting. Elife 6, e24060 (2017)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  25. Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012). https://doi.org/10.1038/nmeth.2019

    Article  Google Scholar 

  26. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  27. Way, G.P., et al.: Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 13(11), 911–923 (2022)

    Article  Google Scholar 

  28. Yang, Z., Fang, T.: On the accuracy of image normalization by Zernike moments. Image Vision Comput. 28(3), 403–413 (2010). https://doi.org/10.1016/j.imavis.2009.06.010

    Article  Google Scholar 

Download references

Acknowledgements

This material is partially based upon work supported by NSF grant No. DBI-1548297. VPP was supported by FSE REACT-EU-PON 2014–2020, DM 1062/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Paolo Pastore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pastore, V.P. et al. (2023). An Unsupervised Learning Approach to Resolve Phenotype to Genotype Mapping in Budding Yeasts Vacuoles. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics