Skip to main content

Real-Time GAN-Based Model for Underwater Image Enhancement

  • 471 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 14233)

Abstract

Enhancing image quality is crucial for achieving an accurate and reliable image analysis in vision-based automated tasks. Underwater imaging encounters several challenges that can negatively impact image quality, including limited visibility, color distortion, contrast sensitivity issues, and blurriness. Among these, depending on how the water filters out the different light colors at different depths, the color distortion results in a loss of color information and a blue or green tint to the overall image, making it difficult to identify different underwater organisms or structures accurately. Improved underwater image quality can be crucial in marine biology, oceanography, and oceanic exploration. Therefore, this paper proposes a novel Generative Adversarial Network (GAN) architecture for underwater image enhancement, restoring good perceptual quality to obtain a more precise and detailed image. The effectiveness of the proposed method is evaluated on the EUVP dataset, which comprises underwater image samples of various visibility conditions, achieving remarkable results. Moreover, the trained network is run on the RPi4B as an embedded system to measure the time required to enhance the images with limited computational resources, simulating a practical underwater investigation setting. The outcome demonstrates the presented method applicability in real-world underwater exploration scenarios.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avola, D., Bernardi, M., Cinque, L., Foresti, G.L., Massaroni, C.: Adaptive bootstrapping management by keypoint clustering for background initialization. Pattern Recognit. Lett. 100, 110–116 (2017). https://doi.org/10.1016/j.patrec.2017.10.029

    Article  Google Scholar 

  2. Avola, D., et al.: A novel GAN-based anomaly detection and localization method for aerial video surveillance at low altitude. Remote Sens. 14(16), 4110 (2022). https://doi.org/10.3390/rs14164110

    Article  Google Scholar 

  3. Avola, D., Cascio, M., Cinque, L., Fagioli, A., Foresti, G.L.: Affective action and interaction recognition by multi-view representation learning from handcrafted low-level skeleton features. Int. J. Neural Syst. 2250040 (2022). https://doi.org/10.1142/s012906572250040x

  4. Avola, D., Cinque, L., De Marsico, M., Fagioli, A., Foresti, G.L.: LieToMe: preliminary study on hand gestures for deception detection via fisher-LSTM. Pattern Recognit. Lett. 138, 455–461 (2020). https://doi.org/10.1016/j.patrec.2020.08.014

    Article  Google Scholar 

  5. Avola, D., Cinque, L., Fagioli, A., Foresti, G.L., Fragomeni, A., Pannone, D.: 3d hand pose and shape estimation from RGB images for keypoint-based hand gesture recognition. Pattern Recognit. 129, 108762 (2022). https://doi.org/10.1016/j.patrec.2017.10.029

    Article  Google Scholar 

  6. Avola, D., Cinque, L., Fagioli, A., Foresti, G., Mecca, A.: Ultrasound medical imaging techniques: a survey. ACM Comput. Surv. 54(3), 1–38 (2021). https://doi.org/10.1145/3447243

    Article  Google Scholar 

  7. Avola, D., Cinque, L., Foresti, G.L., Pannone, D.: Automatic deception detection in RGB videos using facial action units. In: International Conference on Distributed Smart Cameras, pp. 1–6 (2019). https://doi.org/10.1145/3349801.3349806

  8. Avola, D., Foresti, G.L., Martinel, N., Micheloni, C., Pannone, D., Piciarelli, C.: Real-time incremental and geo-referenced mosaicking by small-scale UAVs. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 694–705. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_62

    Chapter  Google Scholar 

  9. Avola, D., Petracca, A., Placidi, G.: Design of a framework for personalised 3d modelling from medical images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 3(2), 76–83 (2015). https://doi.org/10.1080/21681163.2013.853622

  10. Berman, D., Levy, D., Avidan, S., Treibitz, T.: Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2822–2837 (2021). https://doi.org/10.1109/TPAMI.2020.2977624

    Article  Google Scholar 

  11. Budzan, S., et al.: Using gesture recognition for AGV control: preliminary research. Sensors 23(6), 3109 (2023). https://doi.org/10.3390/s23063109

    Article  Google Scholar 

  12. Cho, Y., Jeong, J., Kim, A.: Model-assisted multiband fusion for single image enhancement and applications to robot vision. IEEE Robot. Autom. Lett. 3(4), 2822–2829 (2018). https://doi.org/10.1109/LRA.2018.2843127

    Article  Google Scholar 

  13. Dzedzickis, A., Kaklauskas, A., Bucinskas, V.: Human emotion recognition: review of sensors and methods. Sensors 20(3), 592 (2020). https://doi.org/10.3390/s20030592

    Article  Google Scholar 

  14. Elhoseny, M.: Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems. Circuits Syst. Signal Process. 39, 611–630 (2020)

    Article  Google Scholar 

  15. Fabbri, C., Islam, M.J., Sattar, J.: Enhancing underwater imagery using generative adversarial networks. In: IEEE International Conference on Robotics and Automation, pp. 7159–7165 (2018). https://doi.org/10.1109/ICRA.2018.8460552

  16. Guo, Y., Li, H., Zhuang, P.: Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 45(3), 862–870 (2020). https://doi.org/10.1109/JOE.2019.2911447

    Article  Google Scholar 

  17. Islam, M.J., Ho, M., Sattar, J.: Understanding human motion and gestures for underwater human-robot collaboration. J. Field Robot. 36(5), 851–873 (2019). https://doi.org/10.1002/rob.21837

    Article  Google Scholar 

  18. Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 5(2), 3227–3234 (2020). https://doi.org/10.1109/LRA.2020.2974710

    Article  Google Scholar 

  19. Kang, Z., Yang, J., Yang, Z., Cheng, S.: A review of techniques for 3d reconstruction of indoor environments. ISPRS Int. J. Geo-Inf. 9(5), 330 (2020). https://doi.org/10.3390/ijgi9050330

    Article  Google Scholar 

  20. Li, C., Guo, J., Guo, C.: Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 25(3), 323–327 (2018). https://doi.org/10.1109/LSP.2018.2792050

    Article  Google Scholar 

  21. Li, H., Zhuang, P.: DewaterNet: a fusion adversarial real underwater image enhancement network. Signal Process. Image Commun. 95, 116248 (2021). https://doi.org/10.1016/j.image.2021.116248

    Article  Google Scholar 

  22. Li, H., Zhuang, P., Wei, W., Li, J.: Underwater image enhancement based on dehazing and color correction. In: IEEE International Conference on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computer and Networking, pp. 1365–1370 (2019). https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00196

  23. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2018). https://doi.org/10.1109/LRA.2017.2730363

    Article  Google Scholar 

  24. Liu, Y., Rong, S., Cao, X., Li, T., He, B.: Underwater single image dehazing using the color space dimensionality reduction prior. IEEE Access 8, 91116–91128 (2020). https://doi.org/10.1109/ACCESS.2020.2994614

    Article  Google Scholar 

  25. Petit, F., Capelle-Laize, A.S., Carre, P.: Underwater image enhancement by attenuation inversion with quaternions. In: IEEE International Conference on Acoustic Speech Signal Process, pp. 1177–1180 (2009). https://doi.org/10.1109/ICASSP.2009.4959799

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Sharma, P., et al.: Student engagement detection using emotion analysis, eye tracking and head movement with machine learning. In: Reis, A., Barroso, J., Martins, P., Jimoyiannis, A., Huang, R.YM., Henriques, R. (eds.) TECH-EDU 2022. CCIS, vol. 1720, pp. 52–68. Springer, Cham (2023). https://doi.org/10.1007/9783031229183_5

  28. Wang, J., et al.: CA-GAN: class-condition attention GAN for underwater image enhancement. IEEE Access 8, 130719–130728 (2020). https://doi.org/10.1109/ACCESS.2020.3003351

    Article  Google Scholar 

  29. Xiong, J., Zhuang, P., Zhang, Y.: An efficient underwater image enhancement model with extensive Beer-Lambert law. In: IEEE International Conference on Image Processing (ICIP), pp. 893–897 (2020). https://doi.org/10.1109/ICIP40778.2020.9191131

  30. Ye, X., Xu, H., Ji, X., Xu, R.: Underwater image enhancement using stacked generative adversarial networks. In: Pacific Rim Conference on Multimedia (PCM), pp. 514–524 (2018). https://doi.org/10.1007/9783030007645_47

  31. Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y., Goh, R.S.M.: AnomalyNet: an anomaly detection network for video surveillance. IEEE Trans. Inf. Forensics Secur. 14(10), 2537–2550 (2019). https://doi.org/10.1109/TIFS.2019.2900907

    Article  Google Scholar 

  32. Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021). https://doi.org/10.1109/JPROC.2021.3054390

    Article  Google Scholar 

  33. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by “Smart unmannEd AeRial vehiCles for Human likE monitoRing (SEARCHER)” project of the Italian Ministry of Defence (CIG: Z84333EA0D); and “A Brain Computer Interface (BCI) based System for Transferring Human Emotions inside Unmanned Aerial Vehicles (UAVs)” Sapienza Research Projects (Protocol number: RM1221816C1CF63B); and “DRrone Aerial imaGe SegmentatiOn System (DRAGONS)” (CIG: Z71379B4EA); and Departmental Strategic Plan (DSP) of the University of Udine - Interdepartmental Project on Artificial Intelligence (2020–25); and “An Integrated Platform For Autonomous Agents For Maritime Situational Awareness (ARGOS)” project of the Italian Ministry of Defence (PNRM 2022); and the MICS (Made in Italy - Circular and Sustainable) Extended Partnership and received funding from Next-Generation EU (Italian PNRR - M4 C2, Invest 1.3 - D.D. 1551.11-10-2022, PE00000004). CUP MICS B53C22004130001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Avola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avola, D. et al. (2023). Real-Time GAN-Based Model for Underwater Image Enhancement. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14233. Springer, Cham. https://doi.org/10.1007/978-3-031-43148-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43148-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43147-0

  • Online ISBN: 978-3-031-43148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics