Skip to main content

Anger Breeds Controversy: Analyzing Controversy and Emotions on Reddit

  • 218 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 14161)


Emotions play an important role in interpersonal interactions and social conflict, yet their function in the development of controversy and disagreement in online conversations has not been fully explored. To address this gap, we study controversy on Reddit, a popular network of online discussion forums. We collect discussions from various topical forums and use emotion detection to recognize a range of emotions from text, including anger, fear, joy, admiration, etc. (Code and dataset are publicly available at We find controversial comments express more anger and less admiration, joy, and optimism than non-controversial comments. Moreover, controversial comments affect emotions of downstream comments, resulting in a long-term increase in anger and a decrease in positive emotions. The magnitude and direction of emotional change differ by forum. Finally, we show that emotions help better predict which comments will become controversial. Understanding the dynamics of emotions in online discussions can help communities to manage conversations better.


  • Controversy
  • Emotion
  • Reddit

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

  2. 2.

    Results do not differ qualitatively when using a higher threshold of the number of controversial comments to define controversial discussions.


  1. Alhuzali, H., Ananiadou, S.: SpanEmo: casting multi-label emotion classification as span-prediction. In: European ACL, pp. 1573–1584 (2021)

    Google Scholar 

  2. Plaza-del Arco, F.M., Molina-González, M.D., Urena-López, L.A., Martín-Valdivia, M.T.: Comparing pre-trained language models for Spanish hate speech detection. Expert Syst. Appl. 166, 114120 (2021)

    CrossRef  Google Scholar 

  3. Bar-Tal, D., Halperin, E., De Rivera, J.: Collective emotions in conflict situations: Societal implications. J. Soc. Issues 63(2), 441–460 (2007)

    CrossRef  Google Scholar 

  4. Barbieri, F., Anke, L., Camacho-Collados, J.: XLM-t: multilingual language models in twitter for sentiment analysis and beyond (2021)

    Google Scholar 

  5. Baumgartner, J., Zannettou, S., Keegan, B., Squire, M., Blackburn, J.: The pushshift reddit dataset. In: ICWSM, vol. 14, pp. 830–839 (2020)

    Google Scholar 

  6. Bi, N.C.: How emotions and issue controversy influence the diffusion of societal issues with imagined audience on facebook. Beh. Inf. Technol. 41(6), 1245–1257 (2022)

    CrossRef  Google Scholar 

  7. Brady, W.J., McLoughlin, K., Doan, T.N., Crockett, M.J.: How social learning amplifies moral outrage expression in online social networks. Sci. Adv. 7(33), eabe5641 (2021)

    CrossRef  Google Scholar 

  8. Brady, W.J., Wills, J.A., Jost, J.T., Tucker, J.A., Van Bavel, J.J.: Emotion shapes the diffusion of moralized content in social networks. PNAS 114(28), 7313–7318 (2017)

    CrossRef  Google Scholar 

  9. Chochlakis, G., Mahajan, G., Baruah, S., Burghardt, K., Lerman, K., Narayanan, S.: Using emotion embeddings to transfer knowledge between emotions, languages, and annotation formats. In: ICASSP, pp. 1–5. IEEE (2023)

    Google Scholar 

  10. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116 (2019)

  11. Coviello, L., et al.: Detecting emotional contagion in massive social networks. PLoS ONE 9(3), e90315 (2014)

    CrossRef  Google Scholar 

  12. Demszky, D., et al.: Goemotions: a dataset of fine-grained emotions. arXiv preprint arXiv:2005.00547 (2020)

  13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: ACL, pp. 4171–4186 (2019)

    Google Scholar 

  14. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: EMNLP, pp. 38–45. ACL (2020)

    Google Scholar 

  15. Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying controversy on social media. ACM Trans. Soc. Comput. 1(1), 1–27 (2018)

    CrossRef  Google Scholar 

  16. Haidt, J.: Why the past 10 years of American life have been uniquely stupid. The Atlantic (2022)

    Google Scholar 

  17. Hessel, J., Lee, L.: Something’s brewing! early prediction of controversy-causing posts from discussion features. In: ACL, pp. 1648–1659 (2019)

    Google Scholar 

  18. Koncar, P., Walk, S., Helic, D.: Analysis and prediction of multilingual controversy on reddit. In: WebScience. WebSci 2021, pp. 215–224 (2021)

    Google Scholar 

  19. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv: abs/1907.11692 (2019)

  20. MacAvaney, S., Yao, H.R., Yang, E., Russell, K., Goharian, N., Frieder, O.: Hate speech detection: challenges and solutions. PLoS ONE 14(8), e0221152 (2019)

    CrossRef  Google Scholar 

  21. Mejova, Y., Zhang, A.X., Diakopoulos, N., Castillo, C.: Controversy and sentiment in online news. arXiv preprint arXiv:1409.8152 (2014)

  22. Mohammad, S., Bravo-Marquez, F., Salameh, M., Kiritchenko, S.: Semeval-2018 task 1: Affect in tweets. In: SemEval, pp. 1–17 (2018)

    Google Scholar 

  23. Park, C.Y., et al.: Detecting community sensitive norm violations in online conversations. In: Findings of EMNLP, pp. 3386–3397 (2021)

    Google Scholar 

  24. Poletto, F., Basile, V., Sanguinetti, M., Bosco, C., Patti, V.: Resources and benchmark corpora for hate speech detection: a systematic review. Lang. Resour. Eval. 55(2), 477–523 (2021)

    CrossRef  Google Scholar 

  25. Stieglitz, S., Dang-Xuan, L.: Emotions and information diffusion in social media-sentiment of microblogs and sharing behavior. J. Manag. Inf. Syst. 29(4), 217–248 (2013)

    CrossRef  Google Scholar 

  26. Van Kleef, G.A., Cheshin, A., Fischer, A.H., Schneider, I.K.: The social nature of emotions. Front. Psychol. 7, 896 (2016)

    Google Scholar 

  27. Zayats, V., Ostendorf, M.: Conversation modeling on Reddit using a graph-structured LSTM. Trans. ACL 6, 121–132 (2018)

    Google Scholar 

Download references


This material is based upon work supported in part by the Defense Advanced Research Projects Agency (DARPA) under Agreements No. HR00112290025 and HR001121C0168, and in part by the Air Force Office for Scientific Research (AFOSR) under contract FA9550-20-1-0224.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kai Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, K., He, Z., Chang, RC., May, J., Lerman, K. (2023). Anger Breeds Controversy: Analyzing Controversy and Emotions on Reddit. In: Thomson, R., Al-khateeb, S., Burger, A., Park, P., A. Pyke, A. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2023. Lecture Notes in Computer Science, vol 14161. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43128-9

  • Online ISBN: 978-3-031-43129-6

  • eBook Packages: Computer ScienceComputer Science (R0)