Skip to main content

Regression Chain Model for Predicting Epidemic Variables

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2023)

Abstract

Real-time detection and forecasting of disease dynamics is critical for healthcare authorities during epidemics. In this paper, we report a systematic investigation into the possibility of predicting three epidemic variables, viz., peak day, peak infections, and span of the epidemic using the Regression Chain Model.

We construct a dataset, EpiNet, using 35K synthetic networks of varied sizes and belonging to three network families. The dataset consists of five network features and three target variables obtained by simulating the SEIR epidemic model on the networks. We train Regression Chain Model (RCM) using four popular machine learning algorithms to predict the target variables. The model generally performs fairly well for peak day and peak infections, but the performance degrades for the span variable. Our preliminary investigation motivates further inquiry into the use of RCMs to replace computationally expensive epidemic simulations on larger networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the choice of epidemic model and parameters are disease-specific.

  2. 2.

    We omit scale-free networks as they are inappropriate to study epidemic spread [4].

  3. 3.

    https://snap.stanford.edu/data/#socnets.

  4. 4.

    https://github.com/kirtiJain25/EpiNet.

References

  1. Barabási, A.L.: Network Science Book. Cambridge University Press, Cambridge (2014). http://barabasi.com/networksciencebook

  2. Borchani, H., Varando, G., Bielza, C., Larranaga, P.: A survey on multi-output regression. Wiley Interdisc. Rev. Data Mining Knowl. Disc. 5(5), 216–233 (2015)

    Article  Google Scholar 

  3. Bucur, D., Holme, P.: Beyond ranking nodes: predicting epidemic outbreak sizes by network centralities. PLoS Comput. Biol. 16(7), 1–20 (2020)

    Article  Google Scholar 

  4. Du, M.: Contact tracing as a measure to combat covid-19 and other infectious diseases. Am. J. Infect. Control 50(6), 638–644 (2022)

    Article  MathSciNet  Google Scholar 

  5. Hethcote, H.W.: The basic epidemiology models: models, expressions for R0, parameter estimation and applications, vol. 16, chap. 1, pp. 1–61. World Scientific Publishing, Singapore (2008)

    Google Scholar 

  6. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. Royal Soc. Interface 2(4), 295–307 (2005)

    Article  Google Scholar 

  7. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Cond. Matter Complex Syst. 26(4), 521–529 (2002)

    Article  Google Scholar 

  8. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  10. Pérez-Ortiz, et al.: Network topological determinants of pathogen spread. Sci. Rep. 12(1), 1–13 (2022)

    Google Scholar 

  11. Rodrigues, F.A., et al.: A machine learning approach to predicting dynamical observables from network structure. arXiv preprint arXiv:1910.00544 (2019)

  12. Shirley, M.D., Rushton, S.P.: The impacts of network topology on disease spread. Ecol. Complex. 2(3), 287–299 (2005)

    Article  Google Scholar 

  13. Small, M., Cavanagh, D.: Modelling strong control measures for epidemic propagation with networks - a COVID-19 case study. IEEE Access 8, 109719–109731 (2020)

    Article  Google Scholar 

  14. Smith, R.D.: Average path length in complex networks: patterns and predictions. arXiv preprint arXiv:0710.2947 (2007)

  15. Snijders, T.A.: The degree variance: an index of graph heterogeneity. Social Netw. 3(3), 163–174 (1981)

    Article  MathSciNet  Google Scholar 

  16. Volz, E.M., et al.: Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comput. Biol. 7, e1002042 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, K., Bhatnagar, V., Kaur, S. (2023). Regression Chain Model for Predicting Epidemic Variables. In: Thomson, R., Al-khateeb, S., Burger, A., Park, P., A. Pyke, A. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2023. Lecture Notes in Computer Science, vol 14161. Springer, Cham. https://doi.org/10.1007/978-3-031-43129-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43129-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43128-9

  • Online ISBN: 978-3-031-43129-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics