Skip to main content

Double Transfer Learning to Detect Lithium-Ion Batteries on X-Ray Images

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

With the soaring popularity of electronic gadgets, Lithium-Ion Batteries (LIB) have witnessed a remarkable surge. The inspiration behind this study arises from the urgent need to automate the identification of batteries in diverse contexts, such as electronic waste recycling facilities or security screening at airports. Ultimately, it strives to minimize health hazards associated with battery recycling by enabling more accurate sorting with minimal human involvement. In this paper, we applied double transfer learning to eight cutting-edge object detectors, unlocking the potential of X-Ray images in recognizing and categorizing electronic mobile devices (EMD) along with their embedded Lithium-Ion batteries (LIB).

D. Rohrschneider and N.A. Baker—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sterkens, W., Diaz-Romero, D., Goedemé, T., Dewulf, W., Peeters, J.R.: Detection and recognition of batteries on x-ray images of waste electrical and electronic equipment using deep learning. Resour. Conserv. Recycl. 168, 105246 (2021)

    Article  Google Scholar 

  2. Abou Baker, N., Stehr, J., Handmann, U.: Transfer learning approach towards a smarter recycling. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) ICANN 2022. LNCS, vol. 13529, pp. 685–696. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15919-0_57

    Chapter  Google Scholar 

  3. Dangerous goods. https://www.easa.europa.eu/en/domains/passengers/dangerous-goods. Accessed 10 Feb 2023

  4. Ma, X., Azhari, L., Wang, Y.: Li-ion battery recycling challenges. Chem 7(11), 2843–2847 (2021)

    Article  Google Scholar 

  5. Lithium batteries in baggage. https://www.faa.gov/newsroom/lithium-batteries-baggage. Accessed 22 July 2022

  6. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  7. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://ultralytics.com/. Accessed 06 Feb 2023

  8. Tao, R., et al.: Towards real-world x-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10903–10912 (2021)

    Google Scholar 

  9. YOLOv5 and Vision AI. https://ultralytics.com/. Accessed 22 July 2022

  10. Abou Baker, N., Rohrschneider, D., Handmann, U.: Battery detection of xray images using transfer learning. In: The 30th European Symposium on Artificial Neural Networks (ESANN 2022), (Bruges, Belgium), pp. 241–246 (2022)

    Google Scholar 

  11. Miao, C., et al.: Sixray: a large-scale security inspection x-ray benchmark for prohibited item discovery in overlapping images. in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2114–2123 (2019)

    Google Scholar 

  12. Wei, Y., Tao, R., Wu, Z., Ma, Y., Zhang, L., Liu, X.: Occluded prohibited items detection: an x-ray security inspection benchmark and de-occlusion attention module. CoRR, abs/2004.08656 (2020)

    Google Scholar 

  13. Wang, B., Zhang, L., Wen, L., Liu, X., Wu, Y.: Towards real-world prohibited item detection: a large-scale x-ray benchmark. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5392–5401 (2021)

    Google Scholar 

  14. Mery, D., et al.: Gdxray: the database of x-ray images for nondestructive testing. J. Nondestr. Eval. 34, 1–12 (2015)

    Article  Google Scholar 

  15. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  17. Zhang, H., et al.: Dino: Detr with improved denoising anchor boxes for end-to-end object detection (2022)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  19. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10778–10787 (2020)

    Google Scholar 

  21. RoboFlow. https://roboflow.com/. Accessed 22 July 2022

  22. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)

    Google Scholar 

  23. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Beal, J., Kim, E., Tzeng, E., Park, D.H., Zhai, A., Kislyuk, D.: Toward transformer-based object detection. CoRR, vol. abs/2012.09958 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermeen Abou Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rohrschneider, D., Baker, N.A., Handmann, U. (2023). Double Transfer Learning to Detect Lithium-Ion Batteries on X-Ray Images. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43085-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43084-8

  • Online ISBN: 978-3-031-43085-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics