Abstract
With the soaring popularity of electronic gadgets, Lithium-Ion Batteries (LIB) have witnessed a remarkable surge. The inspiration behind this study arises from the urgent need to automate the identification of batteries in diverse contexts, such as electronic waste recycling facilities or security screening at airports. Ultimately, it strives to minimize health hazards associated with battery recycling by enabling more accurate sorting with minimal human involvement. In this paper, we applied double transfer learning to eight cutting-edge object detectors, unlocking the potential of X-Ray images in recognizing and categorizing electronic mobile devices (EMD) along with their embedded Lithium-Ion batteries (LIB).
D. Rohrschneider and N.A. Baker—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sterkens, W., Diaz-Romero, D., Goedemé, T., Dewulf, W., Peeters, J.R.: Detection and recognition of batteries on x-ray images of waste electrical and electronic equipment using deep learning. Resour. Conserv. Recycl. 168, 105246 (2021)
Abou Baker, N., Stehr, J., Handmann, U.: Transfer learning approach towards a smarter recycling. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) ICANN 2022. LNCS, vol. 13529, pp. 685–696. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15919-0_57
Dangerous goods. https://www.easa.europa.eu/en/domains/passengers/dangerous-goods. Accessed 10 Feb 2023
Ma, X., Azhari, L., Wang, Y.: Li-ion battery recycling challenges. Chem 7(11), 2843–2847 (2021)
Lithium batteries in baggage. https://www.faa.gov/newsroom/lithium-batteries-baggage. Accessed 22 July 2022
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)
Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://ultralytics.com/. Accessed 06 Feb 2023
Tao, R., et al.: Towards real-world x-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10903–10912 (2021)
YOLOv5 and Vision AI. https://ultralytics.com/. Accessed 22 July 2022
Abou Baker, N., Rohrschneider, D., Handmann, U.: Battery detection of xray images using transfer learning. In: The 30th European Symposium on Artificial Neural Networks (ESANN 2022), (Bruges, Belgium), pp. 241–246 (2022)
Miao, C., et al.: Sixray: a large-scale security inspection x-ray benchmark for prohibited item discovery in overlapping images. in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2114–2123 (2019)
Wei, Y., Tao, R., Wu, Z., Ma, Y., Zhang, L., Liu, X.: Occluded prohibited items detection: an x-ray security inspection benchmark and de-occlusion attention module. CoRR, abs/2004.08656 (2020)
Wang, B., Zhang, L., Wen, L., Liu, X., Wu, Y.: Towards real-world prohibited item detection: a large-scale x-ray benchmark. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5392–5401 (2021)
Mery, D., et al.: Gdxray: the database of x-ray images for nondestructive testing. J. Nondestr. Eval. 34, 1–12 (2015)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)
Zhang, H., et al.: Dino: Detr with improved denoising anchor boxes for end-to-end object detection (2022)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10778–10787 (2020)
RoboFlow. https://roboflow.com/. Accessed 22 July 2022
Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Beal, J., Kim, E., Tzeng, E., Park, D.H., Zhai, A., Kislyuk, D.: Toward transformer-based object detection. CoRR, vol. abs/2012.09958 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rohrschneider, D., Baker, N.A., Handmann, U. (2023). Double Transfer Learning to Detect Lithium-Ion Batteries on X-Ray Images. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-43085-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43084-8
Online ISBN: 978-3-031-43085-5
eBook Packages: Computer ScienceComputer Science (R0)