Skip to main content

Cranial Nerve Involvement in Genetic Disorders

  • Chapter
  • First Online:
The Cranial Nerves in Neurology
  • 414 Accesses

Abstract

Owing to the rapid advancements of genomic sequencing technology, a large number of molecular defects have been found to underlie various neurogenetic conditions. Only few of these hereditary disorders are characterized by a predominant or even isolated affection of CNs, while a much larger number may involve them as part of a more complex neurological or multisystem phenotype. Given the magnitude of potentially underlying genetic etiologies, the aim of this chapter is to provide a clinically oriented overview of monogenic conditions causing CN dysfunction. Mainly based on epidemiological relevance, a few selected conditions will be delineated in more detail. As the era of precision medicine has already been entered, the constantly increasing number of targeted treatments which are already available for certain genetic disorders will be emphasized.

Author of this chapter: Martin Krenn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Negi SK, Guda C. Global gene expression profiling of healthy human brain and its application in studying neurological disorders. Sci Rep. 2017;7(1):897.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rexach J, Lee H, Martinez-Agosto JA, Nemeth AH, Fogel BL. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol. 2019;18(5):492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cordes SP. Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci. 2001;2(9):611–23.

    Article  CAS  PubMed  Google Scholar 

  5. Gutowski NJ, Bosley TM, Engle EC. 110th ENMC international workshop: the congenital cranial dysinnervation disorders (CCDDs). Naarden, the Netherlands, 25-27 October, 2002. Neuromuscul Disord. 2003;13(7–8):573–8.

    Article  CAS  PubMed  Google Scholar 

  6. Whitman MC. Axonal growth abnormalities underlying ocular cranial nerve disorders. Annu Rev Vis Sci. 2021;7:827–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Verzijl HT, van der Zwaag B, Cruysberg JR, Padberg GW. Mobius syndrome redefined: a syndrome of rhombencephalic maldevelopment. Neurology. 2003;61(3):327–33.

    Article  PubMed  Google Scholar 

  8. Tomas-Roca L, Tsaalbi-Shtylik A, Jansen JG, Singh MK, Epstein JA, Altunoglu U, et al. De novo mutations in PLXND1 and REV3L cause Mobius syndrome. Nat Commun. 2015;6:7199.

    Article  CAS  PubMed  Google Scholar 

  9. Gutowski NJ. Duane’s syndrome. Eur J Neurol. 2000;7(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  10. Barry BJ, Whitman MC, Hunter DG, Engle EC. Duane Syndrome. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  11. Miyake N, Chilton J, Psatha M, Cheng L, Andrews C, Chan WM, et al. Human CHN1 mutations hyperactivate alpha2-chimaerin and cause Duane’s retraction syndrome. Science. 2008;321(5890):839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park JG, Tischfield MA, Nugent AA, Cheng L, Di Gioia SA, Chan WM, et al. Loss of MAFB function in humans and mice causes Duane syndrome, aberrant extraocular muscle innervation, and inner-ear defects. Am J Hum Genet. 2016;98(6):1220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Baradie R, Yamada K, St Hilaire C, Chan WM, Andrews C, McIntosh N, et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet. 2002;71(5):1195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shinwari JM, Khan A, Awad S, Shinwari Z, Alaiya A, Alanazi M, et al. Recessive mutations in COL25A1 are a cause of congenital cranial dysinnervation disorder. Am J Hum Genet. 2015;96(1):147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu-Wai-Man P, Chinnery PF. Leber hereditary optic neuropathy. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  16. Carelli V, Carbonelli M, de Coo IF, Kawasaki A, Klopstock T, Lagreze WA, et al. International consensus statement on the clinical and therapeutic Management of Leber hereditary optic neuropathy. J Neuroophthalmol. 2017;37(4):371–81.

    Article  PubMed  Google Scholar 

  17. Ando M, Hashiguchi A, Okamoto Y, Yoshimura A, Hiramatsu Y, Yuan J, et al. Clinical and genetic diversities of Charcot-Marie-Tooth disease with MFN2 mutations in a large case study. J Peripher Nerv Syst. 2017;22(3):191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bombelli F, Stojkovic T, Dubourg O, Echaniz-Laguna A, Tardieu S, Larcher K, et al. Charcot-Marie-tooth disease type 2A: from typical to rare phenotypic and genotypic features. JAMA Neurol. 2014;71(8):1036–42.

    Article  PubMed  Google Scholar 

  19. Pipis M, Feely SME, Polke JM, Skorupinska M, Perez L, Shy RR, et al. Natural history of Charcot-Marie-Tooth disease type 2A: a large international multicentre study. Brain. 2020;143(12):3589–602.

    Article  PubMed  Google Scholar 

  20. Echaniz-Laguna A, Dubourg O, Carlier P, Carlier RY, Sabouraud P, Pereon Y, et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy. Neurology. 2014;82(21):1919–26.

    Article  CAS  PubMed  Google Scholar 

  21. Sanmaneechai O, Feely S, Scherer SS, Herrmann DN, Burns J, Muntoni F, et al. Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene. Brain. 2015;138(Pt 11):3180–92.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Breza M, Koutsis G. Kennedy’s disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease. J Neurol. 2019;266(3):565–73.

    Article  PubMed  Google Scholar 

  23. Hashizume A, Fischbeck KH, Pennuto M, Fratta P, Katsuno M. Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA). J Neurol Neurosurg Psychiatry. 2020;91(10):1085–91.

    Article  PubMed  Google Scholar 

  24. Bernard E, Pegat A, Svahn J, Bouhour F, Leblanc P, Millecamps S, et al. Clinical and molecular landscape of ALS patients with SOD1 mutations: novel pathogenic variants and novel phenotypes. A single ALS center study. Int J Mol Sci. 2020;21(18):6807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51(4):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cortese A, Tozza S, Yau WY, Rossi S, Beecroft SJ, Jaunmuktane Z, et al. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome due to RFC1 repeat expansion. Brain. 2020;143(2):480–90.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hutchin TP, Cortopassi GA. Mitochondrial defects and hearing loss. Cell Mol Life Sci. 2000;57(13–14):1927–37.

    Article  CAS  PubMed  Google Scholar 

  28. Bayat M, Yavarian Y, Bayat A, Christensen J. Enhancement of cranial nerves, conus medullaris, and nerve roots in POLG mitochondrial disease. Neurol Genet. 2019;5(5):e360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petcharunpaisan S, Castillo M. Multiple cranial nerve enhancement in mitochondrial neurogastrointestinal encephalomyopathy. J Comput Assist Tomogr. 2010;34(2):247–8.

    Article  PubMed  Google Scholar 

  30. Gamez J, Minoves T. Abnormal brainstem auditory evoked responses in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): evidence of delayed central conduction time. Clin Neurophysiol. 2006;117(11):2385–91.

    Article  PubMed  Google Scholar 

  31. Shofty B, Ben Sira L, Constantini S. Neurofibromatosis 1-associated optic pathway gliomas. Childs Nerv Syst. 2020;36(10):2351–61.

    Article  PubMed  Google Scholar 

  32. Newell C, Chalil A, Langdon KD, Karapetyan V, Hebb MO, Siddiqi F, et al. Cranial nerve and intramedullary spinal malignant peripheral nerve sheath tumor associated with neurofibromatosis-1. Surg Neurol Int. 2021;12:630.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fisher LM, Doherty JK, Lev MH, Slattery WH 3rd. Distribution of nonvestibular cranial nerve schwannomas in neurofibromatosis 2. Otol Neurotol. 2007;28(8):1083–90.

    Article  PubMed  Google Scholar 

  34. Dhamija R, Plotkin S, Asthagiri A, Messiaen L, Babovic-Vuksanovic D. Schwannomatosis. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews((R)). Seattle; 1993.

    Google Scholar 

  35. Whitman MC, Engle EC. Ocular congenital cranial dysinnervation disorders (CCDDs): insights into axon growth and guidance. Hum Mol Genet. 2017;26(R1):R37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krenn M, Tomschik M, Rath J, Cetin H, Grisold A, Zulehner G, et al. Genotype-guided diagnostic reassessment after exome sequencing in neuromuscular disorders: experiences with a two-step approach. Eur J Neurol. 2020;27(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  37. Pena LDM, Jiang YH, Schoch K, Spillmann RC, Walley N, Stong N, et al. Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases. Genet Med. 2018;20(4):464–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Krenn .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krenn, M. (2023). Cranial Nerve Involvement in Genetic Disorders. In: The Cranial Nerves in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-031-43081-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43081-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43080-0

  • Online ISBN: 978-3-031-43081-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics