Abstract
Single image super-resolution is important part of computer vision open problems. Recently, deep neural networks have demonstrated excellent performance in this problem. In this work, several cutting edge methods for super-resolution problem using deep neural networks will be considered. Comparison of their effectiveness and evaluation of neural networks architectures with respect to different metrics is one of our main goals for this research. Modern deep learning methods often require large computational cost and load a lot of computer memory, which affects the ease of use of neural networks and the time of generation super-resolution results. In addition to the existing models, we propose a new architecture of neural networks based on best properties of considered architectures and designed to eliminate their shortcomings. Furthermore, we compare the quality of all considered deep learning methods with baseline method of bicubic interpolation.
The work of Ilya Makarov was made in the framework of the strategic project “Digital Business” within the Strategic Academic Leadership Program “Priority 2030" at NUST MISiS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of BMVC 2012 (2012)
Cheng, X., Fu, Z., Yang, J.: Zero-shot image super-resolution with depth guided internal degradation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 265–280. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_16
Diebel, J., Thrun, S.: An application of Markov random fields to range sensing. In: Advances in Neural Information Processing Systems, pp. 291–298 (2006)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25
Fattal, R.: Image upsampling via imposed edge statistics. ACM Trans. Graphics (TOG) 26(3), 95 (2007)
Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graphics Appl. 22(2), 56–65 (2002)
Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV, pp. 349–356. IEEE (2009)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197–5206 (2015)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karpov, A., Makarov, I.: Exploring efficiency of vision transformers for self-supervised monocular depth estimation. In: 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 711–719. IEEE (2022)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)
Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: CVPR, pp. 1637–1645 (2016)
Kim, K.I., Kwon, Y.: Example-based learning for single-image super-resolution. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 456–465. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69321-5_46
Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. (ToG) 26(3), 96 (2007)
Korinevskaya, A., Makarov, I.: Fast depth map super-resolution using deep neural network. In: ISMAR2018, pp. 117–122. IEEE, New York, USA (2018)
Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. arXiv:1710.01992 (2017)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)
Li, Y., Xue, T., Sun, L., Liu, J.: Joint example-based depth map super-resolution. In: ICME, pp. 152–157. IEEE (2012)
Makarov, I., Aliev, V., Gerasimova, O.: Semi-dense depth interpolation using deep convolutional neural networks. In: ACM Multimedia (MM2017), pp. 1407–1415. ACM, New York, USA (2017)
Makarov, I., Bakhanova, M., Nikolenko, S., Gerasimova, O.: Self-supervised recurrent depth estimation with attention mechanisms. PeerJ Comput. Sci. 8(e865), 1–25 (2022)
Makarov, I., Borisenko, G.: Depth inpainting via vision transformer. In: ISMAR2021, pp. 286–291. IEEE, New York, USA (2021)
Makarov, I., Korinevskaya, A., Aliev, V.: Fast semi-dense depth map estimation. In: Proceedings of the ACM Workshop on Multimedia for Real Estate Tech (RETech2018), pp. 18–21. ACM, New York, USA (2018)
Makarov, I., Korinevskaya, A., Aliev, V.: Sparse depth map interpolation using deep convolutional neural networks. In: TSP2018, pp. 1–5. IEEE (2018)
Makarov, I., et al.: On reproducing semi-dense depth map reconstruction using deep convolutional neural networks with perceptual loss. In: ACM Multimedia (MM2019), pp. 1080–1084. ACM, New York, USA (2019)
Maslov, D., Makarov, I.: Online supervised attention-based recurrent depth estimation from monocular video. PeerJ Comput. Sci. 6(e317), 1–22 (2020)
Maslov, D., Makarov, I.: Fast depth reconstruction using deep convolutional neural networks. In: Rojas, I., Joya, G., Català, A. (eds.) IWANN 2021. LNCS, vol. 12861, pp. 456–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85030-2_38
Savchenko, A.V.: Fast inference in convolutional neural networks based on sequential three-way decisions. Inf. Sci. 560, 370–385 (2021)
Savchenko, A.V.: MT-EmotiEffNet for multi-task human affective behavior analysis and learning from synthetic data. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV 2022 Workshops. ECCV 2022. LNCS, vol. 13806. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25075-0_4
Savchenko, A.V., Belova, N.S.: Statistical testing of segment homogeneity in classification of piecewise-regular objects. Int. J. Appl. Math. Comput. Sci. 25(4), 915–925 (2015)
Savchenko, A.V., Savchenko, L.V.: Towards the creation of reliable voice control system based on a fuzzy approach. Pattern Recogn. Lett. 65, 145–151 (2015)
Savchenko, A., Khokhlova, Y.I.: About neural-network algorithms application in viseme classification problem with face video in audiovisual speech recognition systems. Optical Mem. Neural Netw. 23(1), 34–42 (2014)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sokolova, A.D., Kharchevnikova, A.S., Savchenko, A.V.: Organizing multimedia data in video surveillance systems based on face verification with convolutional neural networks. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 223–230. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_20
Wang, Y., Wang, L., Wang, H., Li, P.: End-to-end image super-resolution via deep and shallow convolutional networks. arXiv preprint arXiv:1607.07680 (2016)
Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)
Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016). https://doi.org/10.1016/j.sigpro.2016.05.002
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pokoev, A., Makarov, I. (2023). LAPUSKA: Fast Image Super-Resolution via LAPlacian UpScale Knowledge Alignment. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-43078-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43077-0
Online ISBN: 978-3-031-43078-7
eBook Packages: Computer ScienceComputer Science (R0)