Abstract
Wildfires pose a significant threat to the environment and local communities, and predicting their occurrence is crucial for effective management and prevention. The Caribbean region is particularly susceptible to wildfires due to factors such as human activities, climate change, and natural causes. In this article, we propose a comprehensive methodology that combines data from multi-source satellite data and applies a range of predictive models. The results demonstrate the potential of deep learning techniques for identifying high-risk areas and developing effective fire management strategies. They also highlight the importance of continued research and investment in this area to improve the accuracy of predictive models and ultimately ensure the safety of communities and the environment. The findings have important implications for policymakers and stakeholders in the Caribbean region, who can use this information to develop more effective fire management strategies to minimize the impact of wildfires on the environment and local communities. By identifying high-risk areas, preventative measures such as controlled burns and improved fire management strategies can be implemented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahamad, M.: Arima-based forecasting of the effects of wildfire on the increasing tree cover trend and recurrence interval of woody encroachment in grazing land. Resourc. Environ. Sustain. 10, 100091 (2022)
Ausdal, S.V.: Potreros, ganancias y poder. Una historia ambiental de la ganadería en Colombia, 1850–1950. Historia Crítica (39E), pp. 126–149 (2009)
Ayram, C.A., Etter, A., Díaz-Timoté, J., Buriticá, S.R., Ramírez, W., Corzo, G.: Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecol. Ind. 117, 106630 (2020)
Bernal, G., Poveda, G., Roldán, P., Andrade, C.: Patrones de variabilidad de las temperaturas superficiales del mar en la costa caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 30(115), 195–208 (2006)
Enfield, D.B., Alfaro, E.J.: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and pacific oceans. J. Clim. 12(7), 2093–2103 (1999)
Etter, A., McAlpine, C., Possingham, H.: Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Ann. Assoc. Am. Geogr. 98(1), 2–23 (2008)
Fernández-García, V., Beltrán-Marcos, D., Fernández-Guisuraga, J.M., Marcos, E., Calvo, L.: Predicting potential wildfire severity across Southern Europe with global data sources. Sci. Total Environ. 829, 154729 (2022)
Gaikwad, A., Bhuta, N., Jadhav, T., Jangale, P., Shinde, S.: A review on forest fire prediction techniques. In: Proceedings of the IEEE International Conference On Computing, Communication, Control And Automation, pp. 31–35 (2022)
IDEAM Instituto de hidrología, meteorología y estudios ambientales: Atlas climatológico de Colombia (2015)
Kadir, E.A., Kung, H.T., Rosa, S.L., Sabot, A., Othman, M., Ting, M.: Forecasting of fires hotspot in tropical region using LSTM algorithm based on satellite data. In: Proceedings of the IEEE Region 10 Symposium, pp. 1–7 (2022)
Kalantar, B., Ueda, N., Idrees, M.O., Janizadeh, S., Ahmadi, K., Shabani, F.: Forest fire susceptibility prediction based on machine learning models with resampling algorithms on remote sensing data. Remote Sens. 12, 3682 (2020)
Poveda, G.: La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 28(107), 201–222 (2004)
Poveda, G., Mesa, O.J.: On the existence of lloró (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27(11), 1675–1678 (2000)
Poveda, G., Waylen, P.R., Pulwarty, R.S.: Annual and inter-annual variability of the present climate in northern south America and Southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 234(1), 3–27 (2006). Late Quaternary climates of tropical America and adjacent seas
Qadir, A., Talukdar, N.R., Uddin, M.M., Ahmad, F., Goparaju, L.: Predicting forest fire using multispectral satellite measurements in Nepal. Remote Sens. Appl. Soc. Environ. 23, 100539 (2021)
Radocaj, D., Jurisic, M., Gasparovic, M.: A wildfire growth prediction and evaluation approach using Landsat and MODIS data. J. Environ. Manag. 304, 114351 (2022)
Rashkovetsky, D., Mauracher, F., Langer, M., Schmitt, M.: Wildfire detection from multisensor satellite imagery using deep semantic segmentation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 7001–7016 (2021)
Restrepo, J.C., et al.: Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): magnitude, variability and recent changes. J. Hydrol. 509, 266–281 (2014)
Rim, C., Om, K., Ren, G., Kim, S., Kim, H., Kang-Chol, O.: Establishment of a wildfire forecasting system based on coupled weather-wildfire modeling. Appl. Geogr. 90, 224–228 (2018)
Tehrany, M.S., Jones, S., Shabani, F., Martínez-Álvarez, F., Bui, D.T.: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoret. Appl. Climatol. 137, 637–653 (2019)
Xie, W., He, M., Tang, B.: Data-enabled correlation analysis between wildfire and climate using GIS. In: Proceedings of the 3rd International Conference on Information and Computer Technologies, pp. 31–35 (2020)
Acknowledgements
The authors would like to thank the Spanish Ministry of Science and Innovation for the support under the projects PID2020-117954RB and TED2021-131311B, and the European Regional Development Fund and Junta de Andalucía for projects PY20-00870 and UPO-138516. This work has also been funded by the Becas Iberoamérica: Santander Investigación 2021.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Torres, J.F., Valencia, S., Martínez-Álvarez, F., Hoyos, N. (2023). Predicting Wildfires in the Caribbean Using Multi-source Satellite Data and Deep Learning. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-43078-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43077-0
Online ISBN: 978-3-031-43078-7
eBook Packages: Computer ScienceComputer Science (R0)