Skip to main content

Predicting Wildfires in the Caribbean Using Multi-source Satellite Data and Deep Learning

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14135))

Included in the following conference series:

  • 579 Accesses

Abstract

Wildfires pose a significant threat to the environment and local communities, and predicting their occurrence is crucial for effective management and prevention. The Caribbean region is particularly susceptible to wildfires due to factors such as human activities, climate change, and natural causes. In this article, we propose a comprehensive methodology that combines data from multi-source satellite data and applies a range of predictive models. The results demonstrate the potential of deep learning techniques for identifying high-risk areas and developing effective fire management strategies. They also highlight the importance of continued research and investment in this area to improve the accuracy of predictive models and ultimately ensure the safety of communities and the environment. The findings have important implications for policymakers and stakeholders in the Caribbean region, who can use this information to develop more effective fire management strategies to minimize the impact of wildfires on the environment and local communities. By identifying high-risk areas, preventative measures such as controlled burns and improved fire management strategies can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahamad, M.: Arima-based forecasting of the effects of wildfire on the increasing tree cover trend and recurrence interval of woody encroachment in grazing land. Resourc. Environ. Sustain. 10, 100091 (2022)

    Article  Google Scholar 

  2. Ausdal, S.V.: Potreros, ganancias y poder. Una historia ambiental de la ganadería en Colombia, 1850–1950. Historia Crítica (39E), pp. 126–149 (2009)

    Google Scholar 

  3. Ayram, C.A., Etter, A., Díaz-Timoté, J., Buriticá, S.R., Ramírez, W., Corzo, G.: Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecol. Ind. 117, 106630 (2020)

    Article  Google Scholar 

  4. Bernal, G., Poveda, G., Roldán, P., Andrade, C.: Patrones de variabilidad de las temperaturas superficiales del mar en la costa caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 30(115), 195–208 (2006)

    Google Scholar 

  5. Enfield, D.B., Alfaro, E.J.: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and pacific oceans. J. Clim. 12(7), 2093–2103 (1999)

    Article  Google Scholar 

  6. Etter, A., McAlpine, C., Possingham, H.: Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Ann. Assoc. Am. Geogr. 98(1), 2–23 (2008)

    Article  Google Scholar 

  7. Fernández-García, V., Beltrán-Marcos, D., Fernández-Guisuraga, J.M., Marcos, E., Calvo, L.: Predicting potential wildfire severity across Southern Europe with global data sources. Sci. Total Environ. 829, 154729 (2022)

    Article  PubMed  Google Scholar 

  8. Gaikwad, A., Bhuta, N., Jadhav, T., Jangale, P., Shinde, S.: A review on forest fire prediction techniques. In: Proceedings of the IEEE International Conference On Computing, Communication, Control And Automation, pp. 31–35 (2022)

    Google Scholar 

  9. IDEAM Instituto de hidrología, meteorología y estudios ambientales: Atlas climatológico de Colombia (2015)

    Google Scholar 

  10. Kadir, E.A., Kung, H.T., Rosa, S.L., Sabot, A., Othman, M., Ting, M.: Forecasting of fires hotspot in tropical region using LSTM algorithm based on satellite data. In: Proceedings of the IEEE Region 10 Symposium, pp. 1–7 (2022)

    Google Scholar 

  11. Kalantar, B., Ueda, N., Idrees, M.O., Janizadeh, S., Ahmadi, K., Shabani, F.: Forest fire susceptibility prediction based on machine learning models with resampling algorithms on remote sensing data. Remote Sens. 12, 3682 (2020)

    Article  Google Scholar 

  12. Poveda, G.: La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 28(107), 201–222 (2004)

    Article  Google Scholar 

  13. Poveda, G., Mesa, O.J.: On the existence of lloró (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27(11), 1675–1678 (2000)

    Article  Google Scholar 

  14. Poveda, G., Waylen, P.R., Pulwarty, R.S.: Annual and inter-annual variability of the present climate in northern south America and Southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 234(1), 3–27 (2006). Late Quaternary climates of tropical America and adjacent seas

    Google Scholar 

  15. Qadir, A., Talukdar, N.R., Uddin, M.M., Ahmad, F., Goparaju, L.: Predicting forest fire using multispectral satellite measurements in Nepal. Remote Sens. Appl. Soc. Environ. 23, 100539 (2021)

    Google Scholar 

  16. Radocaj, D., Jurisic, M., Gasparovic, M.: A wildfire growth prediction and evaluation approach using Landsat and MODIS data. J. Environ. Manag. 304, 114351 (2022)

    Article  Google Scholar 

  17. Rashkovetsky, D., Mauracher, F., Langer, M., Schmitt, M.: Wildfire detection from multisensor satellite imagery using deep semantic segmentation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 7001–7016 (2021)

    Article  Google Scholar 

  18. Restrepo, J.C., et al.: Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): magnitude, variability and recent changes. J. Hydrol. 509, 266–281 (2014)

    Article  Google Scholar 

  19. Rim, C., Om, K., Ren, G., Kim, S., Kim, H., Kang-Chol, O.: Establishment of a wildfire forecasting system based on coupled weather-wildfire modeling. Appl. Geogr. 90, 224–228 (2018)

    Article  Google Scholar 

  20. Tehrany, M.S., Jones, S., Shabani, F., Martínez-Álvarez, F., Bui, D.T.: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoret. Appl. Climatol. 137, 637–653 (2019)

    Article  Google Scholar 

  21. Xie, W., He, M., Tang, B.: Data-enabled correlation analysis between wildfire and climate using GIS. In: Proceedings of the 3rd International Conference on Information and Computer Technologies, pp. 31–35 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Spanish Ministry of Science and Innovation for the support under the projects PID2020-117954RB and TED2021-131311B, and the European Regional Development Fund and Junta de Andalucía for projects PY20-00870 and UPO-138516. This work has also been funded by the Becas Iberoamérica: Santander Investigación 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres, J.F., Valencia, S., Martínez-Álvarez, F., Hoyos, N. (2023). Predicting Wildfires in the Caribbean Using Multi-source Satellite Data and Deep Learning. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics