Skip to main content

Intersection over Union with Smoothing for Bounding Box Regression

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

We focus on the construction of a loss function for the bounding box regression. The Intersection over Union (IoU) metric is improved to converge faster, to make the surface of the loss function smooth and continuous over the whole searched space, and to reach a more precise approximation of the labels. The main principle is adding a smoothing part to the original IoU, where the smoothing part is given by a linear space with values that increases from the ground truth bounding box to the border of the input image, and thus covers the whole spatial search space. We show the motivation and formalism behind this loss function and experimentally prove that it outperforms IoU, DIoU, CIoU, and SIoU by a large margin. We experimentally show that the proposed loss function is robust with respect to the noise in the dimension of ground truth bounding boxes. The reference implementation is available at https://gitlab.com/irafm-ai/smoothing-iou.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gevorgyan, Z.: Siou loss: more powerful learning for bounding box regression. arXiv preprint arXiv:2205.12740 (2022)

  2. Girshick, R.: Fast R-CNN. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). ICCV 2015, USA, pp. 1440–1448, IEEE Computer Society (2015). https://doi.org/10.1109/ICCV.2015.169

  3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2013). https://doi.org/10.1109/CVPR.2014.81

  4. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 492–518 (1964)

    Article  Google Scholar 

  5. Jarrahi, M.H., Memariani, A., Guha, S.: The principles of data-centric AI (DCAI). arXiv preprint arXiv:2211.14611 (2022)

  6. Lei, R., Yan, D., Wu, H., Peng, Y.: A precise convolutional neural network-based classification and pose prediction method for PCB component quality control. In: 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1–6. IEEE (2022)

    Google Scholar 

  7. Li, G., Ji, Z., Qu, X., Zhou, R., Cao, D.: Cross-domain object detection for autonomous driving: a stepwise domain adaptative yolo approach. IEEE Trans. Intell. Veh. 7(3), 603–615 (2022)

    Article  Google Scholar 

  8. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  9. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  10. Pal, S.K., Pramanik, A., Maiti, J., Mitra, P.: Deep learning in multi-object detection and tracking: state of the art. Appl. Intell. 51(9), 6400–6429 (2021). https://doi.org/10.1007/s10489-021-02293-7

    Article  Google Scholar 

  11. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: Towards balanced learning for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 821–830. IEEE Computer Society (2019). https://doi.org/10.1109/CVPR.2019.00091, https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00091

  12. Ravi, N., Naqvi, S., El-Sharkawy, M.: Biou: an improved bounding box regression for object detection. J. Low Power Electron. Appl. 12, 51 (2022). https://doi.org/10.3390/jlpea12040051

    Article  Google Scholar 

  13. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  14. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) NIPS, pp. 91–99 (2015)

    Google Scholar 

  15. Rezatofighi, S.H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I.D., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. CoRR abs/1902.09630 (2019). http://arxiv.org/abs/1902.09630

  16. Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International conference on machine learning, pp. 10096–10106. PMLR (2021)

    Google Scholar 

  17. Xufei, W., Song, J.: ICIOU: improved loss based on complete intersection over union for bounding box regression. IEEE Access PP, 1–1 (2021). https://doi.org/10.1109/ACCESS.2021.3100414

  18. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. In: Proceedings of the 24th ACM International Conference on Multimedia. MM 2016, New York, NY, USA, pp. 516–520. Association for Computing Machinery (2016). https://doi.org/10.1145/2964284.2967274, https://doi.org/10.1145/2964284.2967274

  19. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  20. Zhang, H., Chang, H., Ma, B., Wang, N., Chen, X.: Dynamic R-CNN: towards high quality object detection via dynamic training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 260–275. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_16

    Chapter  Google Scholar 

  21. Zhang, Y.F., Ren, W., Zhang, Z., Jia, Z., Wang, L., Tan, T.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022). https://doi.org/10.1016/j.neucom.2022.07.042, https://www.sciencedirect.com/science/article/pii/S0925231222009018

  22. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IOU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 12993–13000 (2020). https://doi.org/10.1609/aaai.v34i07.6999, https://ojs.aaai.org/index.php/AAAI/article/view/6999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hurtik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Števuliáková, P., Hurtik, P. (2023). Intersection over Union with Smoothing for Bounding Box Regression. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics