Skip to main content

Autonomic Dysfunction in Sleep Disorders

  • Chapter
  • First Online:
Autonomic Disorders in Clinical Practice

Abstract

The autonomic nervous system (ANS) main function is the maintenance of body homeostasis and the promotion of adaptation against external changes. Sleep state deeply differs from waking state in terms of metabolic needs, motor activity, and environmental interaction. As a direct consequence, ANS plays a role of utmost importance during: a) the passage between wakefulness and sleep; b) the maintenance of sleep and its architecture (i.e., sleep phases and cycles); and c) the awakening. The subtle balance between sympathetic and parasympathetic activity dynamically changes during all these phases, in order to regulate cardiovascular function, body temperature, neuroendocrine system, and awareness. The functional association between ANS and sleep is sustained also by strict anatomical relationships between ANS and sleep structures, in particular in the hypothalamus and brainstem. All these assumptions account for the fact that sleep disorders may be associated with autonomic dysfunction.

The main sleep disorders associated with autonomic dysfunction are insomnia, obstructive sleep apnoea (OSA), narcolepsy, REM behaviour disorder, restless legs syndrome, and the rare idiopathic hypersomnia. With the partial exception of OSA, the supposed pathological mechanisms underlying the ANS involvement are often controversial, but result in a common final consequence, that is a sustained imbalance between sympathetic and parasympathetic activity. When sleep disorders persist, the cardiovascular alterations during sleep (i.e., heart rate and blood pressure increase, arrhythmias, blunted day-to-night blood pressure dipping) may also occur during daytime, resulting in increased cardiovascular diseases and stroke risk.

Taken together, this evidence suggests that the prevention, diagnosis, and treatment of sleep disorders and the prompt evaluation and characterisation of the associated ANS involvement may be of paramount importance in reducing morbidity and mortality due to cardiovascular and cerebrovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silvani A, Dampney RA. Central control of cardiovascular function during sleep. Am J Physiol Heart Circ Physiol. 2013;305(12):H1683–92.

    Article  CAS  PubMed  Google Scholar 

  2. Benarroch EE. Control of the cardiovascular and respiratory systems during sleep. Auton Neurosci. 2019;218:54–63.

    Article  PubMed  Google Scholar 

  3. Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002;25:433–69.

    Article  CAS  PubMed  Google Scholar 

  4. Burgess H, Trinder J, Kim Y, Luke D. Sleep and circadian influences on cardiac autonomic nervous system activity. Am J Phys. 1997;273(4):H1761–8.

    CAS  Google Scholar 

  5. Trinder J, Waloszek J, Woods M, Jordan A. Sleep and cardiovascular regulation. Pflugers Arch. 2012;463(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  6. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246–60.

    Article  CAS  PubMed  Google Scholar 

  7. Lowey AD. Anatomy of the autonomic nervous system: an overview. In: Lowey AD, Spyer KM, editors. Central regulation of autonomic functions. New York: Oxford University Press; 1990. p. 3–16.

    Chapter  Google Scholar 

  8. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H. Sympathe- tic and cardiovascular actions of orexins in conscious rats. Am J Phys. 1999;277(6):R1780–5.

    CAS  Google Scholar 

  9. Parmeggiani PL, Morrison AR. Alterations of autonomic functions during sleep. In: Lowey AD, Spyer KM, editors. Central regulation of autonomic functions. New York: Oxford University Press; 1990.

    Google Scholar 

  10. Chokroverty BS. Physiological changes in sleep. In: Chokroverty S, Ferini-Strambi L, editors. Oxford textbook of sleep disorders. Oxford: Oxford University Press; 2017. p. 43–52.

    Chapter  Google Scholar 

  11. Guilleminault C, Quera-Salva MA, Goldberg MP. Pseudohypersomnia and pre-sleep behaviour with bilateral paramedian thalamic lesions. Brain. 1993;116:1549–63.

    Article  PubMed  Google Scholar 

  12. Trinder J. Cardiac activity and sympathovagal balance during sleep. Sleep Med Clin. 2007;2(2):199–208.

    Article  Google Scholar 

  13. Cellini N, Whitehurst LN, McDevitt EA, Mednick SC. Heart rate variability during daytime naps in healthy adults: autonomic profile and short-term reliability. Psychophysiology. 2016;53(4):473–81.

    Article  PubMed  Google Scholar 

  14. Cellini N, Torre J, Stegagno L, Sarlo M. Cardiac autonomic activity during daytime nap in young adults. J Sleep Res. 2018;27(2):159–64.

    Article  PubMed  Google Scholar 

  15. Whitehurst LN, Naji M, Mednick SC. Comparing the cardiac autonomic activity profile of daytime naps and nighttime sleep. Neurobiol Sleep Circadian Rhythms. 2018;5:52–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smerieri A, Parrino L, Agosti M, Ferri R, Terzano MG. Cyclic alternating pattern sequences and non-cyclic alternating pattern periods in human sleep. Clin Neurophysiol. 2007;118(10):2305–13.

    Article  PubMed  Google Scholar 

  17. Sforza E, Jouny C, Ibanez V. Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol. 2000;111(9):1611–9.

    Article  CAS  PubMed  Google Scholar 

  18. Cole RJ. Postural baroreflex stimuli may affect eeG arousal and sleep in humans. J Appl Physiol. 1989;67:2369–75.

    Article  CAS  PubMed  Google Scholar 

  19. Silvani A, Calandra-Buonaura G, Benarroch EE, et al. Bidirectional interactions between the baroreceptor reflex and arousal: an update. Sleep Med. 2015;16:210–6.

    Article  PubMed  Google Scholar 

  20. Bangash MF, Xie A, Skatrud JB, Reichmuth KJ, Barczi SR, Morgan BJ. Cerebrovascular response to arousal from NReM and ReM sleep. Sleep. 2008;31(3):321–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Katzman R, Terry R. Normal aging of the nervous system. In: Katzman R, editor. The neurology of aging. Philadelphia, PA: Davis; 1983.

    Google Scholar 

  22. Wolk R, Gami AS, Garcia-Touchard A, Somers VK. Sleep and cardiovascular disease. Curr Probl Cardiol. 2005;30(12):625–62.

    Article  PubMed  Google Scholar 

  23. Yano Y, Kario K. Nocturnal blood pressure and cardiovascular disease: a review of recent advances. Hypertens Res. 2012;35(7):695.

    Article  PubMed  Google Scholar 

  24. Staessen JA, Wang JG, Thijs L. Cardiovascular protection and blood pressure reduction: a meta-analysis. Lancet. 2001;358(9290):1305–15.

    Article  CAS  PubMed  Google Scholar 

  25. Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest. 2018;128(6):2157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  26. American Academy of Sleep Medicine. The international classification of sleep disorders 3rd ed (ICSD-3). Derien, IL: AASM; 2014.

    Google Scholar 

  27. Riemann D, Spiegelhalder K, Feige B, et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev. 2010;14(1):19–31.

    Article  PubMed  Google Scholar 

  28. Tobaldini E, Fiorelli EM, Solbiati M, Costantino G, Nobili L, Montano N. Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat Rev Cardiol. 2019;16(4):213–24.

    Article  PubMed  Google Scholar 

  29. Carter JR, Grimaldi D, Fonkoue IT, Medalie L, Mokhlesi B, Van Cauter E. Assessment of sympathetic neural activity in chronic insomnia: evidence for elevated cardiovascular risk. Sleep. 2018;41(9):zsy126.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grimaldi D, Goldsteinb MR, Carterc JR. Insomnia and cardio-vascular autonomic control. Auton Neurosci 2019; 220: 102551. Review.

    Google Scholar 

  31. Ferini Strambi L, Marelli S, Salsone M. Primary insomnia and dysautonomia. In: Chokroverty S, Cortelli P, eds. Autonom Nervous Syst Sleep. 2021;14:165–71.

    Article  Google Scholar 

  32. Spiegelhalder K, Fuchs L, Ladwig J, et al. Heart rate and heart rate variability in subjectively reported insomnia. J Sleep Res. 2011;20(1Pt 2):137–45.

    Article  PubMed  Google Scholar 

  33. Irwin M, Clark C, Kennedy B, Christian Gillin J, ziegler M. Nocturnal catecholamines and immune function in insomniacs, depressed patients, and control subjects. Brain Behav Immun. 2003;17(5):365–72.

    Article  CAS  PubMed  Google Scholar 

  34. Maiolino G, Bisogni V, Soranna D, et al. Sleep Disorders Working Group of the Italian Society of Hypertension. Effects of insomnia and restless legs syndrome on sleep arterial blood pressure: a systematic review and meta-analysis. Sleep Med Rev. 2021;59:101497.

    Article  PubMed  Google Scholar 

  35. Vgontas AN, Fernandez-Mendoza J, Liao D, Bixler EO. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev. 2013;17(4):241–54.

    Article  Google Scholar 

  36. Somers VK, Me D, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Portaluppi F, Provini F, Cortelli P, et al. Undiagnosed sleep-disordered breathing among male nondippers with essential hypertension. J Hypertens. 1997;15(11):1227–33.

    Article  CAS  PubMed  Google Scholar 

  38. Somers VK, Mark AL, Zavala DC, Abboud FM. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J Appl Physiol. 1989;67:2095–100.

    Article  CAS  PubMed  Google Scholar 

  39. Parati G, Di Rienzo M, Bonsignore MR, et al. Autonomic cardiac regulation in obstructive sleep apnea syndrome: evidence from spontaneous baroreflex analysis during sleep. J Hypertens. 1997;15(12 Pt 2):1621–6.

    Article  CAS  PubMed  Google Scholar 

  40. Cortelli P, Parchi P, Sforza E, et al. Cardiovascular autonomic dysfunction in normotensive awake subjects with obstructive sleep apnea syndrome. Clin Auton Res. 1994;4:57–62.

    Article  CAS  PubMed  Google Scholar 

  41. Calandra-Buonaura G, Provini F, Guaraldi P, Plazzi G, Cortelli P. Cardiovascular autonomic dysfunctions and sleep disorders. Sleep Med Rev. 2016;26:43–56.

    Article  PubMed  Google Scholar 

  42. Lombardi C, Parati G, Cortelli P, et al. Daytime sleepiness and neural cardiac modulation in sleep-related breathing disorders. J Sleep Res. 2008;17(3):263–70.

    Article  PubMed  Google Scholar 

  43. Kapur VK, Resnick HE, Gottlieb DJ, Sleep Heart Health Study Group. Sleep disordered breathing and hypertension: does self-reported sleepiness modify the association? Sleep. 2008;31:1127–32.

    PubMed  PubMed Central  Google Scholar 

  44. Cepeda-Valery B, Acharjee S, Romero-Corral A, Pressman GS, Gami AS. Obstructive sleep apnea and acute coronary syndromes: aetiology, risk, and management. Curr Cardiol Rep. 2014;16:535.

    Article  CAS  PubMed  Google Scholar 

  45. Grimaldi D, Silvani A, Benarroch EE, Cortelli P. Orexin/hypocretin system and autonomic control: new insights and clinical correlations. Neurology. 2014;82:271–8.

    Article  PubMed  Google Scholar 

  46. Grimaldi D, Pierangeli G, Barletta G, et al. Spectral analysis of heart rate variability reveals an enhanced sympathetic activity in narcolepsy with cataplexy. Clin Neurophysiol. 2010;121:1142–7.

    Article  CAS  PubMed  Google Scholar 

  47. Fronczek R, Overeem S, Reijntjes R, Lammers GJ, van Dijk JG, Pijl H. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J Clin Sleep Med. 2008;4:248–54.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Silvani A, Grimaldi D, Barletta G, et al. Cardiovascular variability as a function of sleep-wake behaviour in narcolepsy with cataplexy. J Sleep Res. 2013;22(2):178–84.

    Article  PubMed  Google Scholar 

  49. Grimaldi D, Calandra-Buonaura G, Provini F, et al. Abnormal sleep- cardiovascular system interaction in narcolepsy with cataplexy: effects of hypocretin deficiency in humans. Sleep. 2012;35(4):519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dauvilliers Y, Jaussent I, Krams B, et al. Non-dipping blood pressure profile in narcolepsy with cataplexy. PLoS One. 2012;7(6):e38977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van der Meijden WP, Fronczek R, Reijntjes RH, et al. Time- and state- dependent analysis of autonomic control in narcolepsy: higher heart rate with normal heart rate variability independent of sleep fragmentation. J Sleep Res. 2015;24(2):206–14.

    Article  PubMed  Google Scholar 

  52. Sforza E, Roche F, Barthelemy JC, Pichot V. Diurnal and nocturnal cardiovascular variability and heart rate arousal response in idiopathic hypersomnia. Sleep Med. 2016;24:131–6.

    Article  PubMed  Google Scholar 

  53. Miglis MG, Schneider L, Kim P, Cheung J, Trotti LM. Frequency and severity of autonomic symptoms in idiopathic hypersomnia. J Clin Sleep Med. 2020;16(5):749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lee H, Cho YW, Kim HA. The severity and pattern of autonomic dysfunction in idiopathic rapid eye movement sleep behaviour disorder. Mov Disord. 30(13):1843–8.

    Google Scholar 

  55. Terzaghi M, Pilati L, Ghiotto N, et al. Twenty-four-hour blood pressure profile in idiopathic ReM sleep behaviour disorder. Sleep. 2022;45(2):zb239.

    Article  Google Scholar 

  56. Pilotto A, Romagnolo A, Tuazon JA, et al. Orthostatic hypotension and ReM sleep behaviour disorder: impact on clinical outcomes in α-synucleinopathies. J Neurol Neurosurg Psychiatry. 2019;90(11):1257–63.

    Article  PubMed  Google Scholar 

  57. Barone DA, Ebben MR, Samie A, Mortara D, Krieger AC. Autonomic dysfunction in isolated rapid eye movement sleep without atonia. Clin Neurophysiol. 2015;126(4):731–5.

    Article  PubMed  Google Scholar 

  58. Postuma RB, Lanfranchi PA, Blais H, Gagnon JF, Montplaisir JY. Cardiac autonomic dysfunction in idiopathic ReM sleep behaviour disorder. Mov Disord. 2010;25(14):2304–10.

    Article  PubMed  Google Scholar 

  59. Palma JA, Urrestarazu E, Alegre M, et al. Cardiac autonomic impairment during sleep is linked with disease severity in Parkinson’s disease. Clin Neurophysiol. 2013;124(6):1163–8.

    Article  PubMed  Google Scholar 

  60. Kashihara K, Imamura T, Shinya T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with ReM sleep behaviour disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord. 2010;16(4):252–5.

    Article  PubMed  Google Scholar 

  61. Frauscher B, Nomura T, Duerr S, et al. Investigation of autonomic function in idiopathic ReM sleep behaviour disorder. J Neurol. 2012;259(6):1056–61.

    Article  PubMed  Google Scholar 

  62. Izzi F, Placidi F, Romigi A, et al. Is the autonomic nervous system involved in restless legs syndrome during wakefulness? Sleep Med. 2014;15(11):1392–7.

    Article  PubMed  Google Scholar 

  63. Guggisberg AG, Hess CW, Mathis J. The significance of the sympathetic nervous system in the pathophysiology of periodic leg movements in sleep. Sleep. 2007;30:755–66.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pennestri MH, Montplaisir J, Colombo R, Lavigne G, Lanfranchi PA. Nocturnal blood pressure changes in patients with restless legs syndrome. Neurology. 2007;68:1213–8.

    Article  CAS  PubMed  Google Scholar 

  65. Clemens S, Rye D, Hochman S. Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology. 2006;67:125–30.

    Article  PubMed  Google Scholar 

  66. Manconi M, Ferri R, Zucconi M, et al. Effects of acute dopamine-agonist treatment in restless legs syndrome on heart rate variability during sleep. Sleep Med. 2011;12(1):47–55.

    Article  PubMed  Google Scholar 

  67. Kato M, Phillips BG, Sigurdsson G, Narkiewicz K, Pesek CA, Somers VK. Effects of sleep deprivation on neural circulatory control. Hypertension. 2000;35:1173–5.

    Article  CAS  PubMed  Google Scholar 

  68. Schlesinger I, Erikh I, Avizohar O, Sprecher E, Yarnitsky D. Cardiovascular risk factors in restless legs syndrome. Mov Disord. 2009;24:1587–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bozzali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozzali, M., Manni, R., Romagnolo, A., Terzaghi, M. (2023). Autonomic Dysfunction in Sleep Disorders. In: Micieli, G., Hilz, M., Cortelli, P. (eds) Autonomic Disorders in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-43036-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43036-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43035-0

  • Online ISBN: 978-3-031-43036-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics