Skip to main content

Autonomic Nervous System and Cerebrovascular Diseases

  • Chapter
  • First Online:
Autonomic Disorders in Clinical Practice

Abstract

The aim of this chapter is to describe the involvement of the autonomic nervous system (ANS) in the determinism of cerebrovascular pathologies both as a modulating factor of cerebral autoregulation and as a concausal risk element for the pathology. In particular, the mechanisms through which ANS dysfunction can cause the onset of the pathological manifestations of stroke and chronic vascular suffering of the central nervous system (CNS), as well as the sequelae of the acute event and the accompanying manifestations of the chronic phase of the disease, are indicated. In particular, the main changes induced by acute stroke on autonomic functions (especially cardiopressor functions), their prognostic significance, and their functional assessment by means of the most commonly used laboratory tests are described. Possible modulation and control measures on autonomic alterations before and after the acute vascular event are finally reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Qudah ZA, Yacoub HA, Souayah N. Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update. J Vasc Interv Neurol. 2015;8(4):43–52.

    PubMed  PubMed Central  Google Scholar 

  2. Benarroch E, Biaggioni I. Central autonomic control primer on the autonomic nervous system. San Diego, CA: Academic Press; 2012. p. 9–12.

    Book  Google Scholar 

  3. CB Knowledge. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Ann Rev Neurosci. 2002;25:433–69.

    Article  Google Scholar 

  4. Cechetto DF. Central representation of visceral function. Fed Proc. 1987;46:17–23.

    CAS  PubMed  Google Scholar 

  5. Verberne AJ, Owens NC. Cortical modulation of the cardiovascular system. Prog Neurobiol. 1998;54:149.

    Article  CAS  PubMed  Google Scholar 

  6. Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P. The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab. 2011;31:1187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.

    Article  CAS  PubMed  Google Scholar 

  8. Kaplan NM. Management of hypertensive emergencies. Lancet. 1994;344:1335.

    Article  CAS  PubMed  Google Scholar 

  9. Strandgaard S, Olesen J, Skinhoj E, Lassen NA. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1:507–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304:1598–614.

    Article  Google Scholar 

  11. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    CAS  PubMed  Google Scholar 

  12. Wagner EM, Traystman RJ. Hydrostatic determinants of cerebral perfusion. Crit Care Med. 1986;14:484–90.

    Article  CAS  PubMed  Google Scholar 

  13. Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26:1014–9. https://doi.org/10.1161/01.STR.26.6.1014.

    Article  CAS  PubMed  Google Scholar 

  14. Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G. Assessment of autoregulation by means of periodic changes in blood pressure. Stroke. 1995;26:834–7. https://doi.org/10.1161/01.STR.26.5.834.

    Article  CAS  PubMed  Google Scholar 

  15. Claassen JAHR, et al. Regulation of cerebral blood flow in humans: physiology and clinical implications and autoregulation. Physiol Rev. 2021;101:1487–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goadsby PJ. Autonomic nervous system control of the cerebral circulation. In: Buijs RM, Swaab DF, editors. Handbook of Clinical Neurology, Vol. 117 (3rd series) Autonomic Nervous System. Elsevier B.V.: Amsterdam; 2013.

    Google Scholar 

  17. Giovannitti JA Jr, Thoms SM, Crawford. Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog. 2015;62(1):31–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dacey RG, Duling BR. Effect of norepinephrine on penetrating arterioles of rat cerebral cortex. Am J Phys. 1984;246:H380–5.

    CAS  Google Scholar 

  19. Rosendorff C, Mitchell G, Mitchell D. Adrenergic innervation affecting local cerebral blood flow. In: Owman C, Edvinsson L, editors. Neurogenic control of brain circulation: Werner-Gren center international symposium series, vol. 30. Oxford: Pergamon; 1977. p. 455–64.

    Google Scholar 

  20. Sandor P. Nervous control of the cerebrovascular system: doubts and facts. Neurochem Int. 1999;35:237–59.

    Article  CAS  PubMed  Google Scholar 

  21. Sercombe R, Hardebo JE, Kahrstrom J, Seylaz J. Amine-induced responses of pial and penetrating cerebral arteries: evidence for heterogeneous responses. J Cereb Blood Flow Metab. 1990;10:808–18.

    Article  CAS  PubMed  Google Scholar 

  22. Edvinsson L, Owman C, Sjoberg NO. Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain Res. 1976;115:377–93.

    Article  CAS  PubMed  Google Scholar 

  23. Willie CK, Tzeng Y-C, Fisher JA, Ainsli PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. ter Laan M, et al. Sympathetic regulation of cerebral blood flow in humans: a review. Br J Anaesth. 2013;111:361–7. https://doi.org/10.1093/bja/aet122.

    Article  PubMed  Google Scholar 

  25. Faraci FM, et al. Cerebral circulation: effects of sympathetic nerves and protective mechanisms during hypertension. Circ Res. 1987;61:102–6.

    Article  Google Scholar 

  26. Marcus ML, Heistad DD. Effects of sympathetic nerves on cerebral blood flow in awake dogs. Am J Physiol Heart Circ Physiol. 1979;236:H549–53. https://doi.org/10.1152/ajpheart.1979.236.4.H549).

    Article  CAS  Google Scholar 

  27. Micieli G, et al. Intracerebral vascular changes induced by cold pressor test: a model of sympathetic activation. Neurol Res. 1994;15:163–7.

    Article  Google Scholar 

  28. Roatta S, et al. Effect of generalised sympathetic activation by cold pressor test on cerebral haemodynamics in healthy humans. J Auton Nerv Syst. 1998;71:159–66.

    Article  CAS  PubMed  Google Scholar 

  29. Lewis NC, Smith KJ, Bain AR, Wildfong KW, Numan T, Ainslie PN. Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci (Lond). 2015;129:169–78.

    Article  CAS  PubMed  Google Scholar 

  30. Tymko MM, Richards CA, Skow RJ, Ingram-Cotton NC, Howatt MK, Day TA. The effects odf superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulation. Physiol Rep. 2016;4(17):e12957. https://doi.org/10.14814/phy2.12957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tzeng YC, Willie CK, Atkinson G, Lucas SJ, Wong A, Ainslie PN. Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension. 2010;56(2):268–73.

    Article  CAS  PubMed  Google Scholar 

  32. D’Alecy LG, Rose CJ. Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ Res. 1977;41:324–31. https://doi.org/10.1161/01.res.41.3.324.

    Article  PubMed  Google Scholar 

  33. Hamner JW, et al. Cholinergic control of the cerebral vasculature in humans. J Physiol. 2012;590:6343–52. https://doi.org/10.1113/jphysiol.2012.245100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faraci FM, Brian JE Jr. Nitric oxide and the cerebral circulation. Stroke. 1994;25:692–703. https://doi.org/10.1161/01.STR.25.3.692.

    Article  CAS  PubMed  Google Scholar 

  35. Sakas DE, et al. Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci U S A. 1989;86:1401–5. https://doi.org/10.1073/pnas.86.4.1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lammie GA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol. 2002;12:358–70.

    Article  PubMed  Google Scholar 

  37. Iadecola C. Hypertension and dementia. Hypertension. 2014;64:03–5.

    Article  CAS  Google Scholar 

  38. Federico A, Di Donato I, Bianchi S, Di Palma C, Taglia I, et al. Hereditary cerebral small vessel diseases: a review. J Neurol Sci. 2012;322:25–30.

    Article  PubMed  Google Scholar 

  39. Brassard P, Tymko MM, Ainslie PN. Sympathetic control of the brain circulation: appreciating the complexities to better understand the controversy. Auton Neurosci Bas Clin. 2017;207:37–47. https://doi.org/10.1016/j.autneu.2017.05.003.

    Article  Google Scholar 

  40. Uryga A, Nasr N, Kasprowicz M, Budohoski K, Sykora M, Smielewski P, Burzyńska M, Czosnyka M. Relationship between baroreflex and cerebral autoregulation in patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Front Neurol. 2022;12:740338.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001.

    Article  CAS  PubMed  Google Scholar 

  42. Micieli G, Cavallini A. The autonomic nervous system and ischemic stroke: a reciprocal interdependence. Clin Auton Res. 2008;18:308–17.

    Article  PubMed  Google Scholar 

  43. Jefferson G. Isolated oculomotor palsy caused by intra- cranial aneurysm. Proc R Soc Med. 1947;40(8):419–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin TJ. Horner syndrome: a clinical review. ACS Chem Neurosci. 2018;9(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  45. Drexler I, Traenka C, von Hessling A, Gensicke H. Internal carotid artery dissection and asymmetrical facial flushing: the harlequin sign. Stroke. 2014;45(5):e78–80.

    Article  PubMed  Google Scholar 

  46. Oppenheimer S. Striking reciprocity. Clin Auton Res. 2008;18(6):296–7.

    Article  PubMed  Google Scholar 

  47. Guan L, Collet J-P, Mazowita G, Claydon VE. Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor Stroke: possible implications of heart rate variability. Front Neurol. 2018;9:90.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77(1):45–54.

    Article  PubMed  Google Scholar 

  49. Black PH. The inflammatory response is an integral part of the stress response: implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain Behav Immun. 2003;17(5):350–64.

    Article  CAS  PubMed  Google Scholar 

  50. Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J, editors. Handbook of life stress, cognition, and health. J. Wiley: Chichester; 1988. p. 629–49.

    Google Scholar 

  51. Suvarnaa B, Suvarnaa A, Phillips R, Justerc R-P, McDermott B, Sarnyaia Z. Health risk behaviours and allostatic load: a systematic review. Neurosci Biobehav Rev. 2020;108:694–711.

    Article  Google Scholar 

  52. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart J-C, James WPT, Loria CM, Smith SC Jr. Harmonizing the metabolic syndrome. Circulation. 2009;120:1640–5.

    Article  CAS  PubMed  Google Scholar 

  53. Licht CMM, de Geus EJC, Penninx BWJH. Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(6):2484–93.

    Article  CAS  PubMed  Google Scholar 

  54. Anderson EA, Hoffmann RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991;87:2246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Masuo K, Mikami H, Ogihara T, Tuck ML. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens. 1997;10:77–83.

    Article  CAS  PubMed  Google Scholar 

  56. Mancia G, Bousquet P, Elghozi JL, Esler M, Grassi G, Julius S, Reid J, Van Zwieten PA. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909–20.

    Article  CAS  PubMed  Google Scholar 

  57. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14.

    Article  CAS  PubMed  Google Scholar 

  58. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10(5):457–66.

    Article  CAS  PubMed  Google Scholar 

  59. Carandina A, Lazzeri G, Villa D, et al. Targeting the autonomic nervous system for risk stratification, outcome prediction and neuromodulation in ischemic Stroke. Int J Mol Sci. 2021;22(5):2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang F, Liu L, Zhang C, Ji S, Mei Z, Li T. Association of metabolic syndrome and its components with risk of stroke recurrence and mortality: a meta-analysis. Neurology. 2021;97(7):e695–705.

    Article  CAS  PubMed  Google Scholar 

  61. Ulleryd MA, Prahl U, Bö Rsbo J, et al. The association between autonomic dysfunction, inflammation and atherosclerosis in men under investigation for carotid plaques. PLoS One. 2017;12(4):e0174974.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chistiakov DA, Ashwell KW, Orekhov AN, Bobryshev YV. Innervation of the arterial wall and its modification in atherosclerosis. Auton Neurosci Basic Clin. 2015;193:7–11.

    Article  CAS  Google Scholar 

  63. Rupprecht S, Finn S, Hoyer D, Guether A, Witte OW, Schultze T, Schwab M. Association between systemic inflammation, carotid arteriosclerosis, and autonomic dysfunction. Transl Stroke Res. 2020;11(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  64. Fodor DM, Marta MM, Perju-Dumbravă L. Implications of circadian rhythm in Stroke occurrence: certainties and possibilities. Brain Sci. 2021;11(7):865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Riganello F, Prada V, Soddu A, di Perri C, Sannita WG. Circadian rhythms and measures of CNS/autonomic interaction. Int J Environ Res Public Health. 2019;16(13):2336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Do LC, Folsom AR, Blair SN. Physical activity and stroke risk: a meta-analysis. Stroke. 2003;34(10):2475–81.

    Article  Google Scholar 

  67. Mostofsky E, Laier E, Levitan EB, Rosamond WD, Schlaug G, Mittleman MA. Physical activity and onset of acute ischemic stroke: the stroke onset study. Am J Epidemiol. 2011;173(3):330–6.

    Article  PubMed  Google Scholar 

  68. Anderson C, Ni Mhurchu C, Scott D, Bennett D, Jamrozik K, Hankey G. Triggers of subarachnoid hemorrhage: role of physical exertion, smoking, and alcohol in the Australasian cooperative research on subarachnoid hemorrhage study (ACROSS). Stroke. 2003;34(7):1771–6.

    Article  PubMed  Google Scholar 

  69. Guiraud V, Touzé E, Rouillon F, Godefroy O, Mas J-L. Stressful life events as triggers of ischemic stroke: a case-crossover study. Int J Stroke. 2013;8(5):300–7.

    Article  PubMed  Google Scholar 

  70. Ranieri M, Finsterer J, Bedini G, Parati EA, Bersano A. Takotsubo syndrome: clinical features, pathogenesis, treatment, and relationship with cerebrovascular diseases. Curr Neurol Neurosci Rep. 2018;18(5):20. https://doi.org/10.1007/s11910-018-0833-7.

    Article  CAS  PubMed  Google Scholar 

  71. Templin C, Ghadri J, Diekmann J, Napp C, Bataiosu D, Jaguszewski M, Cammann V, Sarcon A, Geyer V, Neuman C, Seifert B, Hellermann J. Clinical features and outcomes of takotsubo (stress) cardiomyopathy. NEJM. 2015;373(10):929–38.

    Article  CAS  PubMed  Google Scholar 

  72. Brunner S, Winter R, Werzer C, von Stülpnagel L, Clasen I, Hameder A, Stöver A, Graw M, Bauer A, Sinner MF. Impact of acute ethanol intake on cardiac autonomic regulation. Sci Rep. 2021;11(1):13255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh A, Saluja S, Kumar A, et al. Cardiovascular complications of marijuana and related substances: a review. Cardiol Ther. 2018;7(1):45–59.

    Article  CAS  PubMed  Google Scholar 

  74. Fisher BAC, Ghuran A, Vadamalai V, Antonios TF. Cardiovascular complications induced by cannabis smoking: a case report and review of the literature. Emerg Med J. 2005;22(9):679–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lavados PM, Olavarría VV, Hoffmeister L, Ambient Temperature and Stroke Risk. Evidence supporting a short-term effect at a population level from acute environmental exposures. Stroke. 2018;49:255–61.

    Article  PubMed  Google Scholar 

  76. Bahouth MN, Venkatesan A. Acute viral illnesses and ischemic Stroke pathophysiological considerations in the era of the COVID-19 pandemic. Stroke. 2021;52:1885–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen P-L, Kuo TBJ, Hang CCH. Parasymapthetic activity correlates with early outcome in patients with large artery atherosclerotic stroke. J Neurol Sci. 2012;314(1–2):57–61.

    Article  PubMed  Google Scholar 

  78. Hilz MJ, Moeller S, Akhundova A, Marthol H, Pauli E, De Fina P, Schwab S. High NIHSS values predict impairment of cardiovascular autonomic control. Stroke. 2011;42(6):1528–33.

    Article  PubMed  Google Scholar 

  79. Xiong L, Leung HW, Chen XY, Leung WH, Soo OY, Wong KS. Autonomic dysfunction in different subtypes of post-acute ischemic stroke. J Neurol Sci. 2014;337(1-2):141–6.

    Article  CAS  PubMed  Google Scholar 

  80. Meglic B, Kobal J, Psredkar J, Pogacnik T. Autonomic nervous system function in patients with acute brainstem stroke. Cerebrovasc Dis. 2001;11(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  81. Ha SY, Park KM, Kim SE, Lee BI, Shin KJ. Autonomic function in progressive lacunar infarction. Acta Neurol Scand. 2018;138:1–9.

    Article  Google Scholar 

  82. Hase Y, Polvikoski TM, Firbank MJ, Craggs LJL, Hawthorne E, Platten C, Stevenson W, Deramecourt V, Ballard C, Kenny RA, Perry RH, Ince P, Carare RO, Allan LM, Hosburgh L, Kalaria RN. Small vessel disease pathological changes in neurodegenerative and vascular dementias concomitant with autonomic dysfunction. Brain Pathol. 2020;30(1):191–202.

    Article  CAS  PubMed  Google Scholar 

  83. Intarhakham K, Suwanpraset K, Muengtaweepongsa S. Correlation between parasymnathetic activity and reduced cerebrovascular reactivity in patients with lacunar infarct. Curr Neurovasc Res. 2017;14(1):65–70.

    Article  Google Scholar 

  84. Zygmunt A, Stanczyk J. Methods of evaluation of auto- nomic nervous system function. Arch Med Sci. 2010;6(1):11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sykora M, Diedler J, Rupp A, Turcani P, Steiner T. Impaired baroreceptor reflex sensitivity in acute stroke is associated with insular involvement, but not with carotid atherosclerosis. Stroke. 2009;40:737–42.

    Article  PubMed  Google Scholar 

  86. Acampa M, Lazzerini PE, Martini G. Atrial cardiopathy and sympatho-vagal imbalance in cryptogenic stroke: pathogenic mechanisms and effects on electrocardiographic markers. Front Neurol. 2018;9:1–10.

    Article  Google Scholar 

  87. Korpelainen JT, Sotaniemi KA, Huikuri HV, Myllyä VV. Abnormal heart rate variability as a manifestation of autonomic dysfunction in hemispheric brain infarction. Stroke1996;27:2059–2063.

    Google Scholar 

  88. Kolin A, Norris JW. Myocardial damage from acute cerebral lesions. Stroke. 1984;15:990–3.

    Article  CAS  PubMed  Google Scholar 

  89. Togha M, Sjarifpour A, Asharf H, Moghadam M, Sahraian MA. Electrocardiographic abnormalities in acute cerebrovascular events in patients with/without cardiovascular disease. Ann Indian Acad Neurol. 2013;16:66–71.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Abboud H, Berroir S, Labreuche J, et al. On behalf of the GENIC investigators. Insular involvement in brain infarction increases risk for cardiac arrhythmias and death. Ann Neurol. 2006;59:691–9.

    Article  PubMed  Google Scholar 

  91. Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport. 2004;15:357–61.

    Article  CAS  PubMed  Google Scholar 

  92. Orlandi G, Fanucchi S, Strata G, Pataleo L, Landucci Pellegrini L, Prontera C, Martini A, Murri L. Transient autonomic nervous system dysfunction during hyper- acute stroke. Acta Neurol Scand. 2000;102:317–21.

    Article  CAS  PubMed  Google Scholar 

  93. Marcheselli S, Cavallini A, Tosi P, Quaglini S, Micieli G. Impaired blood pressure increase in acute cardioembolic stroke. J Hypertens. 2006;24(9):1849–56.

    Article  CAS  PubMed  Google Scholar 

  94. Davison DL, Terek M, Chawla LS. Neurogenic pulmonary edema. Crit Care. 2012;16(2):212.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38:1097–103.

    Article  PubMed  Google Scholar 

  96. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gelber DA, Good DC, Laven LJ, Verhulst SJ. Causes of urinary incontinence after acute hemispheric strokes. Stroke. 1993;24:378–82.

    Article  CAS  PubMed  Google Scholar 

  98. Ullman T, Reding M. Gastrointestinal dysfunction in stroke. Semin Neurol. 1996;16:269–75.

    Article  CAS  PubMed  Google Scholar 

  99. Naver HK, Blomstrand C, Wallin BG. Reduced heart rate variability after right-sided stroke. Stroke. 1996;27(2):247–51.

    Article  CAS  PubMed  Google Scholar 

  100. Ha SY, Park KM, Park J, Kim SE, Lee BI, Shin KJ. Autonomic function testing in progressive lacunar infarction et al. Acta Neurol Scand 2018;138(1):32–40.

    Google Scholar 

  101. Tang S, Xiong L, Fan Y, Mok VCT, Wong KS, Leung TW. Stroke outcome prediction by blood pressure variability, heart rate variability, and baroreflex sensitivity. Stroke. 2020;51(4):1317–20.

    Article  CAS  PubMed  Google Scholar 

  102. Xiong L, Leung HHW, Chen XY, Han JH, Leung TWH, Soo YOY, Chan AYY, Lau AYL, Wong LKS, et al. Int J Stroke. 2013;8(8):645–51.

    Article  PubMed  Google Scholar 

  103. Feibel JH, Hardy PM, Campbell RG, Goldstein MN, Joynt RJ. Prognostic value of the stress response following stroke. JAMA. 1977;238(13):1374–6.

    Article  CAS  PubMed  Google Scholar 

  104. Acharya RU, Joseph PK, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51.

    Article  Google Scholar 

  105. Singh N, Moneghetti KJ, Christle JW, Hadley D, Plews D, Froelicher V. Heart rate variability: an old metric with new meaning in the era of using mHealth technologies for health and exercise training guidance. part one: physiology and methods. Arrhythm Electrophysiol Rev. 2018;7(3):193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fyfe-Johnson AL, Muller CJ, Alonso A, et al. Heart rate variability and incident Stroke: the atherosclerosis Risk in communities study. Stroke. 2016;47(6):1452–8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Binici Z, Mouridsen MR, Køber L, Sajadieh A. Decreased nighttime heart rate variability is associated with increased stroke risk. Stroke. 2011;42(11):3196–201.

    Article  PubMed  Google Scholar 

  108. Lees T, Shad-Kaneez F, Simpson AM, Nassif NT, Lin Y, Lal S. Heart rate variability as a biomarker for predicting stroke, post-stroke complications and functionality. Biomark Insights. 2018;13:1177271918786931.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li C, Meng X, Pan Y, Li Z, Wang M, Wang Y. The association between heart rate variability and 90-Day prognosis in patients with transient ischemic attack and minor Stroke. Front Neurol. 2021;12:861.

    Google Scholar 

  110. Zhao M, Gun L, Wang Y. The association of autonomic nervous system function with ischemic stroke and treatment strategies. Front Neurol. 2020;10:141.

    Article  Google Scholar 

  111. Capone F, Miccinilli S, Pellegrino G, et al. Transcutaneous Vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after Stroke. Neural Plast. 2017;2017:1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Micieli, G., Canavero, I., Mazzacane, F., Cavallini, A. (2023). Autonomic Nervous System and Cerebrovascular Diseases. In: Micieli, G., Hilz, M., Cortelli, P. (eds) Autonomic Disorders in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-43036-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43036-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43035-0

  • Online ISBN: 978-3-031-43036-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics