Skip to main content

Pupillary and Lacrimation Alterations

  • Chapter
  • First Online:
Autonomic Disorders in Clinical Practice

Abstract

Due to in-depth neuroanatomical and functional knowledge, the clinical examination of the pupils is considered an indicator of optic nerve conduction, brainstem integrity, vigilance, and coma. The autonomic nervous system regulates pupil size in response to various stimuli. The parasympathetic nervous system causes miosis in response to light and near visual stimuli. The sympathetic nervous system causes mydriasis in the dark and in response to a variety of arousal factors, both physiological such as wakefulness and pathological such as pain. The clinical approach to pupillary abnormalities must focus on the clinical and pharmacological assessment of the pupil’s response to light and near stimuli. Observation and quantification of responses to physiological tests can be supplemented with specific pharmacological tests to detect damage to sympathetic or parasympathetic innervation. Local or generalized disorders of the autonomic nervous system, also affect neural control of lacrimation. Abnormal lacrimation can be divided into hypo lacrimation, excessive lacrimation or epiphora, and inappropriate lacrimation. Generalized disorders, including Riley Day syndrome or familial dysautonomia and multisystem atrophy or PAF, will be discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDougal DH, Gamlin PD. Autonomic control of the eye. Eye Compr Physiol. 2015;5(1):439–73.

    PubMed  Google Scholar 

  2. May P, Sun W, Wright NF, Erichsen JT. Pupillary light reflex circuits in the macaque monkey: the preganglionic Edinger-Westphal nucleus. Brain Struct Funct. 2020;225:403–25.

    Article  CAS  PubMed  Google Scholar 

  3. Gamlin Paul DR. Subcortical neural circuits for ocular accommodation and vergence in primates. Ophthal Physiol Opt. 1999;19(2):81–9.

    Article  Google Scholar 

  4. Kelbsch C, Strasser T, Chen Y, et al. Standards in pupillography. Front Neurol. 2019;10:129.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khan Z, Bollu PC. Horner syndrome. In: StatPearls. StatPearls Publishing; 2018.

    Google Scholar 

  6. Morales J, Brown SM, Abdul-Rahim AS, Crosson CE. Ocular. J Neuroophthalmol. 2010;30(1):7–11.

    Google Scholar 

  7. Almog Y, Gepstein R, Kesler A. Diagnostic value of imaging in Horner syndrome in adults. J Neuroophthalmol. 2010;30(1):7–11.

    Article  PubMed  Google Scholar 

  8. Biousse V, Touboul PJ, D’Anglejan-Chatillon J, Lévy C, Schaison M, Bousser MG. Ophthalmologic manifestations of internal carotid artery dissection. Am J Ophthalmol. 1998;126(4):565–77.

    Article  CAS  PubMed  Google Scholar 

  9. Ludwig PE, Jessu R, Czyz CN. Physiology, eye. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022.

    Google Scholar 

  10. Miller N, Kanagalingam S. Horner syndrome: clinical perspectives. Eye Brain. 2015;7:35–46.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smit DP. Pharmacological testing in Horner’s syndrome—a new paradigm. S Afr Med J. 2010;100(11):738–40.

    Article  PubMed  Google Scholar 

  12. Bremner F. Apraclonidine is better than cocaine for detection of Horner syndrome. Front Neurol. 2019;10:55.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koc F. The sensitivity and specificity of 0.5% apraclonidine in the diagnosis of oculosympathetic paresis. Br J Ophthalmol. 2005;89(11):1442–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen MTB, Farahvash A, Zhang A, Micieli JA. Apraclonidine for the pharmacologic confirmation of acute Horner syndrome. J Neurol Sci. 2020;419:117190.

    Article  CAS  PubMed  Google Scholar 

  15. Martin GC, Aymard P-A, Denier C, et al. Usefulness of cocaine drops in investigating infant anisocoria. Eur J Paediatr Neurol. 2017;21(6):852–7.

    Article  PubMed  Google Scholar 

  16. Danesh-Meyer HV. The correlation of phenylephrine 1% with hydroxyamphetamine 1% in Horner’s syndrome. Br J Ophthalmol. 2004;88(4):592–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pronin AN, Wang Q, Slepak VZ. Teaching an old drug new tricks: agonism, antagonism, and biased signaling of pilocarpine through M3 muscarinic acetylcholine receptor. Mol Pharmacol. 2017;92(5):601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoo Y-J, Hwang J-M, Yang HK. Dilute pilocarpine test for diagnosis of Adie’s tonic pupil. Sci Rep. 2021;11:10089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rivero Rodríguez D, Scherle Matamoros C, Pernas SY. Adie pupil. Pilocarpine test. Med Clín (Engl Ed). 2018;151(4):170.

    Google Scholar 

  20. Cho P, Yap M. Schirmer test. I. A review. Optom Vis Sci. 1993;70(2):152–6.

    Article  CAS  PubMed  Google Scholar 

  21. Sweeney DF, Millar TJ, Raju SR. Tear film stability: a review. Exp Eye Res. 2013;117:28–38.

    Article  CAS  PubMed  Google Scholar 

  22. Bouffard MA. The pupil. Continuum (Minneap Minn). 2019;25:1194–214.

    PubMed  Google Scholar 

  23. Brazis PW, Lee AG. In: Low A, Benarroch EE, editors. Clinical autonomic disorders. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 588–606.

    Google Scholar 

  24. Bremner FD, Smith SE. Pupil abnormalities in selected autonomic neuropathies. J Neuroophthalmol. 2006;26(3):209–19.

    Article  PubMed  Google Scholar 

  25. Lamotte G, Sandroni P, Cutsforth-Gregory JK, et al. Clinical presentation and autonomic profile in Ross syndrome. J Neurol. 2021;268(10):3852–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brazis PW, Lee AG. In: Low A, Benarroch EE, editors. Clinical autonomic disorders. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 606–9.

    Google Scholar 

  27. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.

    Article  CAS  PubMed  Google Scholar 

  28. Leone M, Bussone G. Pathophysiology of trigeminal autonomic cephalalgias. Lancet Neurol. 2009;8(8):755–64.

    Article  PubMed  Google Scholar 

  29. Cortelli P, Pierangeli G. Chronic pain-autonomic interactions. Neurol Sci. 2003;24(S2):s68–70.

    Article  PubMed  Google Scholar 

  30. Guo S, Petersen AS, Schytz HW, et al. Cranial parasympathetic activation induces autonomic symptoms but no cluster headache attacks. Cephalalgia. 2018;38(8):1418–28.

    Article  PubMed  Google Scholar 

  31. Drummond PD. Autonomic disturbances in cluster headache. Brain. 1988;111(5):1199–209.

    Article  PubMed  Google Scholar 

  32. May A, Burstein R. Hypothalamic regulation of headache and migraine. Cephalalgia. 2019;39(13):1710–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211.

    Article  Google Scholar 

  34. Cortelli P, Pierangeli G. Hypothalamus and headaches. Neurol Sci. 2007;28(S2):S198–202.

    Article  PubMed  Google Scholar 

  35. Danno D, Wolf J, Ishizaki K, Kikui S, Yoshikawa H, Takeshima T. Cranial autonomic symptoms of migraine in Japan: prospective study of 373 migraine patients at a Tertiary Headache Center. Headache. 2020;60(8):1592–600.

    Article  PubMed  Google Scholar 

  36. Sharav Y, Katsarava Z, Charles A. Facial presentations of primary headache disorders. Cephalalgia. 2017;37(7):714–9.

    Article  PubMed  Google Scholar 

  37. de Coo IF, Wilbrink LA, Haan J. Symptomatic trigeminal autonomic cephalalgias. Curr Pain Headache Rep. 2015;19(8):39.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Burish MJ, Rozen TD. Trigeminal autonomic cephalalgias. Neurol Clin. 2019;37(4):847–69.

    Article  PubMed  Google Scholar 

  39. Giffin NJ, Lipton RB, Silberstein SD, Olesen J, Goadsby PJ. The migraine postdrome: an electronic diary study. Neurology. 2016;87(3):309–13. https://doi.org/10.1212/WNL.0000000000002789. Epub 2016 Jun 22.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goadsby PJ, Lambert GA, Lance JW. The mechanism of cerebrovascular vasoconstriction in response to locus coeruleus stimulation. Brain Res. 1985;326(2):213–7. https://doi.org/10.1016/0006-8993(85)90030-7.

    Article  CAS  PubMed  Google Scholar 

  41. Bose P, Karsan N, Goadsby PJ. The migraine postdrome. Continuum (Minneap Minn). 2018;24(4, Headache):1023–31. https://doi.org/10.1212/CON.0000000000000626.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romano, M., Di Leo, R., Mascarella, D., Pierangeli, G., Rufa, A. (2023). Pupillary and Lacrimation Alterations. In: Micieli, G., Hilz, M., Cortelli, P. (eds) Autonomic Disorders in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-43036-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43036-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43035-0

  • Online ISBN: 978-3-031-43036-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics