Skip to main content

Autonomic Control of Breathing in Health and Disease

  • Chapter
  • First Online:
Autonomic Disorders in Clinical Practice

Abstract

The autonomic nervous system plays a major role in generating the rhythmic activity of breathing, regulating airway smooth muscle tone and pulmonary blood flow through a composite interaction of respiration and circulation, and controlling secretions. Breathing rhythmic activity originates from interactions between three coupled oscillators, in which each phase, inspiration, post-inspiration, and active expiration, is generated within the medulla by its own dedicated microcircuit, referred to as the “triple oscillator hypothesis”. This chapter describes the altered autonomic control of breathing in multiple system atrophy, diabetes, epilepsy, chronic obstructive pulmonary disease, asthma, congenital central hypoventilation syndrome, and familial dysautonomia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology. 2018;91(21):958–66.

    Article  PubMed  Google Scholar 

  2. Ramirez JM, Baertsch N. Defining the rhythmogenic elements of mammalian breathing. Physiology (Bethesda). 2018;33(5):302–16.

    PubMed  Google Scholar 

  3. Di Lascio S, Benfante R, Cardani S, Fornasari D. Research advances on therapeutic approaches to congenital central hypoventilation syndrome (CCHS). Front Neurosci. 2021;14:615666.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benarroch EE. Brainstem respiratory control: substrates of respiratory failure of multiple system atrophy. Mov Disord. 2007;22(2):155–61.

    Article  PubMed  Google Scholar 

  5. van der Velden VH, Hulsmann AR. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation. 1999;6(3):145–59.

    Article  PubMed  Google Scholar 

  6. Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res. 2017;367(3):571–90.

    Google Scholar 

  7. Elstad M, O’Callaghan EL, Smith AJ, Ben-Tal A, Ramchandra R. Cardiorespiratory interactions in humans and animals: rhythms for life. Am J Physiol Heart Circ Physiol. 2018;315(1):H6–H17.

    Article  PubMed  Google Scholar 

  8. Farmer DG, Dutschmann M, Paton JF, Pickering AE, McAllen RM. Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J Physiol. 2016;594(24):7249–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125(2):683–90.

    Google Scholar 

  10. Koelsch S, Jäncke L. Music and the heart. Eur Heart J. 2015;36(44):3043–9.

    Article  PubMed  Google Scholar 

  11. Barnish J, Atkinson RA, Barran SM, Barnish MS. Potential benefit of singing for people with Parkinson’s disease: a systematic review. J Parkinsons Dis. 2016;6(3):473–84.

    Article  PubMed  Google Scholar 

  12. Huang J, Yuan X, Zhang N, Qiu H, Chen X. Music therapy in adults with COPD. Respir Care. 2021;66(3):501–9.

    Article  PubMed  Google Scholar 

  13. Bernardi L, Porta C, Casucci G, Balsamo R, Bernardi NF, Fogari R, Sleight P. Dynamic interactions between musical, cardiovascular, and cerebral rhythms in humans. Circulation. 2009;119(25):3171–80.

    Article  PubMed  Google Scholar 

  14. Bernardi NF, Codrons E, di Leo R, Vandoni M, Cavallaro F, Vita G, Bernardi L. Increase in synchronization of autonomic rhythms between individuals when listening to music. Front Physiol. 2017;8:785.

    Google Scholar 

  15. Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry. 2018;89(2):175–84.

    Article  PubMed  Google Scholar 

  16. Shimohata T, Aizawa N, Nakayama H, Taniguchi H, Ohshima Y, Okumura H, Takahashi T, Yokoseki A, Inoue M, Nishizawa M. Mechanisms and prevention of sudden death in multiple system atrophy. Parkinsonism Relat Disord. 2016;30:1–6.

    Article  PubMed  Google Scholar 

  17. Ralls F, Cutchen L. Respiratory and sleep-related complications of multiple system atrophy. Curr Opin Pulm Med. 2020;26(6):615–22.

    Article  CAS  PubMed  Google Scholar 

  18. Glass GA, Josephs KA, Ahlskog JE. Respiratory insufficiency as the primary presenting symptom of multiple-system atrophy. Arch Neurol. 2006;63(7):978–81.

    Article  PubMed  Google Scholar 

  19. Nakayama H, Hokari S, Ohshima Y, Matsuto T, Shimohata T. Breathing irregularity is independently associated with the severity of obstructive sleep apnea in patients with multiple system atrophy. J Clin Sleep Med. 2018;14(10):1661–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ohshima Y, Nakayama H, Matsuyama N, Hokari S, Sakagami T, Sato T, Koya T, Takahashi T, Kikuchi T, Nishizawa M, Shimohata T. Natural course and potential prognostic factors for sleep-disordered breathing in multiple system atrophy. Sleep Med. 2017;34:13–7.

    Article  PubMed  Google Scholar 

  21. Suzuki M, Nakamura T, Hirayama M, Ueda M, Imai E, Harada Y, Katsuno M. Relationship between cardiac parasympathetic dysfunction and the anteroposterior diameter of the medulla oblongata in multiple system atrophy. Clin Auton Res. 2020;30(3):231–8.

    Article  PubMed  Google Scholar 

  22. Cortelli P, Calandra-Buonaura G, Benarroch EE, Giannini G, Iranzo A, Low PA, Martinelli P, Provini F, Quinn N, Tolosa E, Wenning GK, Abbruzzese G, Bower P, Alfonsi E, Ghorayeb I, Ozawa T, Pacchetti C, Pozzi NG, Vicini C, Antonini A, Bhatia KP, Bonavita J, Kaufmann H, Pellecchia MT, Pizzorni N, Schindler A, Tison F, Vignatelli L, Meissner WG. Stridor in multiple system atrophy: consensus statement on diagnosis, prognosis, and treatment. Neurology. 2019;93(14):630–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Warnecke T, Vogel A, Ahring S, Gruber D, Heinze HJ, Dziewas R, Ebersbach G, Gandor F. The shaking palsy of the larynx-potential biomarker for multiple system atrophy: a pilot study and literature review. Front Neurol. 2019;10:241.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rekik S, Martin F, Dodet P, Redolfi S, Leu-Semenescu S, Corvol JC, Grabli D, Arnulf I. Stridor combined with other sleep breathing disorders in multiple system atrophy: a tailored treatment? Sleep Med. 2018;42:53–60.

    Article  PubMed  Google Scholar 

  25. Silvestri R. Sleep-disordered breathing in multiple system atrophy: pathophysiology and new insights for diagnosis and treatment. J Clin Sleep Med. 2018;14(10):1641–2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cernea S, Raz I. Management of diabetic neuropathy. Metabolism. 2021;123:154867.

    Article  CAS  PubMed  Google Scholar 

  27. Spicuzza L, Bernardi L, Calciati A, Di Maria GU. Autonomic modulation of heart rate during obstructive versus central apneas in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2003;167(6):902–10.

    Article  PubMed  Google Scholar 

  28. Freet CS, Stoner JF, Tang X. Baroreflex and chemoreflex controls of sympathetic activity following intermittent hypoxia. Auton Neurosci. 2013;174(1–2):8–14.

    Article  CAS  PubMed  Google Scholar 

  29. Greco C, Spallone V. Obstructive sleep apnoea syndrome and diabetes. Fortuitous association or interaction? Curr Diabetes Rev. 2015;12(2):129–55.

    Article  PubMed  Google Scholar 

  30. Reutrakul S, Mokhlesi B. Obstructive sleep apnea and diabetes: a state of the art review. Chest. 2017;152(5):1070–86.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bernardi L, Rosengård-Bärlund M, Sandelin A, Mäkinen VP, Forsblom C, Groop PH, FinnDiane Study Group. Short-term oxygen administration restores blunted baroreflex sensitivity in patients with type 1 diabetes. Diabetologia. 2011;54(8):2164–73.

    Article  CAS  PubMed  Google Scholar 

  32. Bernardi L, Bianchi L. Integrated cardio-respiratory control: insight in diabetes. Curr Diab Rep. 2016;16(11):107.

    Article  PubMed  Google Scholar 

  33. Bianchi L, Porta C, Rinaldi A, Gazzaruso C, Fratino P, DeCata P, Protti P, Paltro R, Bernardi L. Integrated cardiovascular/respiratory control in type 1 diabetes evidences functional imbalance: possible role of hypoxia. Int J Cardiol. 2017;244:254–9.

    Article  CAS  PubMed  Google Scholar 

  34. Sevcencu C, Struijk JJ. Autonomic alterations and cardiac changes in epilepsy. Epilepsia. 2010;51(5):725–37.

    Article  PubMed  Google Scholar 

  35. Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, Boon P, Crespel A, Dworetzky BA, Høgenhaven H, Lerche H, Maillard L, Malter MP, Marchal C, Murthy JM, Nitsche M, Pataraia E, Rabben T, Rheims S, Sadzot B, Schulze-Bonhage A, Seyal M, So EL, Spitz M, Szucs A, Tan M, Tao JX, Tomson T. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 2013;12(10):966–77.

    Article  PubMed  Google Scholar 

  36. Lhatoo SD, Nei M, Raghavan M, Sperling M, Zonjy B, Lacuey N, Devinsky O. Nonseizure SUDEP: sudden unexpected death in epilepsy without preceding epileptic seizures. Epilepsia. 2016;57(7):1161–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mueller SG, Nei M, Bateman LM, Knowlton R, Laxer KD, Friedman D, Devinsky O, Goldman AM. Brainstem network disruption: a pathway to sudden unexplained death in epilepsy? Hum Brain Mapp. 2018;39(12):4820–30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barot N, Nei M. Autonomic aspects of sudden unexpected death in epilepsy (SUDEP). Clin Auton Res. 2019;29(2):151–60.

    Article  PubMed  Google Scholar 

  39. Heindl S, Lehnert M, Criée CP, Hasenfuss G, Andreas S. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med. 2001;164(4):597–601.

    Article  CAS  PubMed  Google Scholar 

  40. Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuss G, Bernardi L, Andreas S. Slow breathing reduces sympathoexcitation in COPD. Eur Respir J. 2008;32(2):387–92.

    Article  CAS  PubMed  Google Scholar 

  41. Camillo CA, Pitta F, Possani HV, Barbosa MV, Marques DS, Cavalheri V, Probst VS, Brunetto AF. Heart rate variability and disease characteristics in patients with COPD. Lung. 2008;186(6):393–401.

    Article  PubMed  Google Scholar 

  42. van Gestel AJ, Kohler M, Steier J, Teschler S, Russi EW, Teschler H. Cardiac autonomic dysfunction and health-related quality of life in patients with chronic obstructive pulmonary disease. Respirology. 2011;16(6):939–46.

    Article  PubMed  Google Scholar 

  43. Mohammed J, Meeus M, Derom E, Da Silva H, Calders P. Evidence for autonomic function and its influencing factors in subjects with COPD: a systematic review. Respir Care. 2015;60(12):1841–51.

    Article  PubMed  Google Scholar 

  44. Rasheedy D, Taha HM. Cardiac autonomic neuropathy: the hidden cardiovascular comorbidity in elderly patients with chronic obstructive pulmonary disease attending primary care settings. Geriatr Gerontol Int. 2016;16(3):329–35.

    Article  PubMed  Google Scholar 

  45. Haider T, Casucci G, Linser T, Faulhaber M, Gatterer H, Ott G, Linser A, Ehrenburg I, Tkatchouk E, Burtscher M, Bernardi L. Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. J Hypertens. 2009;27(8):1648–54.

    Article  CAS  PubMed  Google Scholar 

  46. Vogtel M, Michels A. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol. 2010;10(3):206–13.

    Article  PubMed  Google Scholar 

  47. Jartti T. Asthma, asthma medication and autonomic nervous system dysfunction. Clin Physiol. 2001;21(2):260–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lewis MJ, Short AL, Lewis KE. Autonomic nervous system control of the cardiovascular and respiratory systems in asthma. Respir Med. 2006;100(10):1688–705.

    Article  CAS  PubMed  Google Scholar 

  49. Fournié C, Chouchou F, Dalleau G, Caderby T, Cabrera Q, Verkindt C. Heart rate variability biofeedback in chronic disease management: a systematic review. Complement Ther Med. 2021;60:102750.

    Article  PubMed  Google Scholar 

  50. Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune pathophysiology in asthma. Front Cell Dev Biol. 2021;9:663535.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Trang H, Samuels M, Ceccherini I, Frerick M, Garcia-Teresa MA, Peters J, Schoeber J, Migdal M, Markstrom A, Ottonello G, Piumelli R, Estevao MH, Senecic-Cala I, Gnidovec-Strazisar B, Pfleger A, Porto-Abal R, Katz-Salamon M. Guidelines for diagnosis and management of congenital central hypoventilation syndrome. Orphanet J Rare Dis. 2020;15(1):252.

    Google Scholar 

  52. Demartini Z, Maranha Gatto LA, Koppe GL, Francisco AN, Guerios EE. Ondine’s curse: myth meets reality. Sleep Med X. 2020;2:100012.

    Article  PubMed  Google Scholar 

  53. Di Lascio S, Benfante R, Cardani S, Fornasari D. Advances in the molecular biology and pathogenesis of congenital central hypoventilation syndrome—implications for new therapeutic targets. Exp Opin Orphan Drugs. 2018;6:719–31.

    Article  Google Scholar 

  54. Kazachkov M, Palma JA, Norcliffe-Kaufmann L, Bar-Aluma BE, Spalink CL, Barnes EP, Amoroso NE, Balou SM, Bess S, Chopra A, Condos R, Efrati O, Fitzgerald K, Fridman D, Goldenberg RM, Goldhaber A, Kaufman DA, Kothare SV, Levine J, Levy J, Lubinsky AS, Maayan C, Moy LC, Rivera PJ, Rodriguez AJ, Sokol G, Sloane MF, Tan T, Kaufmann H. Respiratory care in familial dysautonomia: systematic review and expert consensus recommendations. Respir Med. 2018;141:37–46.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Palma JA, Gileles-Hillel A, Norcliffe-Kaufmann L, Kaufmann H. Chemoreflex failure and sleep-disordered breathing in familial dysautonomia: implications for sudden death during sleep. Auton Neurosci. 2019;218:10–5.

    Article  PubMed  Google Scholar 

  56. Carroll MS, Kenny AS, Patwari PP, Ramirez JM, Weese-Mayer DE. Respiratory and cardiovascular indicators of autonomic nervous system dysregulation in familial dysautonomia. Pediatr Pulmonol. 2012;47(7):682–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vita, G., Vianello, A., Vita, G.L. (2023). Autonomic Control of Breathing in Health and Disease. In: Micieli, G., Hilz, M., Cortelli, P. (eds) Autonomic Disorders in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-43036-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43036-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43035-0

  • Online ISBN: 978-3-031-43036-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics