Skip to main content

3D Printing in Medical Education

  • Chapter
  • First Online:
3D Printing at Hospitals and Medical Centers

Abstract

The use of 3D printed anatomic models for education has increased. Opportunities range from medical school anatomy education to the continuing education of very senior physicians. This chapter covers education for medical students, followed by a survey of the literature for postgraduate training organized by subspecialty. A very brief synopsis of dental education is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtenberger JP, et al. Using 3D printing (additive manufacturing) to produce low-cost simulation models for medical training. Mil Med. 2018;183(Suppl_1):73–7.

    PubMed  Google Scholar 

  2. Chen D, Ganapathy A, Abraham N, et al. 3D printing exposure and perception in radiology residency: survey results of radiology chief residents. 3D Print Med. 2023;9:13. https://doi.org/10.1186/s41205-023-00173-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santiago L, et al. Acceptability of 3D-printed breast models and their impact on the decisional conflict of breast cancer patients: a feasibility study. J Surg Oncol. 2021;123(5):1206–14.

    PubMed  PubMed Central  Google Scholar 

  4. Scott ER, et al. The use of individualized 3D-printed models on trainee and patient education, and surgical planning for robotic partial nephrectomies. J Robot Surg. 2022;17:465.

    PubMed  Google Scholar 

  5. El Bialy S. The 3D printing age and basic sciences education. Educ Med J. 2016;8(4):79.

    Google Scholar 

  6. Sriwastwa A, Ravi P, Emmert A, et al. Generative AI for medical 3D printing: a comparison of ChatGPT outputs to reference standard education. 3D Print Med. 2023;9:21. https://doi.org/10.1186/s41205-023-00186-8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smith CF, et al. Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education. Anat Sci Educ. 2018;11(1):44–53.

    PubMed  Google Scholar 

  8. Erolin C. Interactive 3D digital models for anatomy and medical education. In: Rea PM, editor. Biomedical visualisation. Cham: Springer International Publishing; 2019. p. 1–16.

    Google Scholar 

  9. Wickramasinghe N, Thompson BR, Xiao J. The opportunities and challenges of digital anatomy for medical sciences: narrative review. JMIR Med Educ. 2022;8(2):e34687.

    PubMed  PubMed Central  Google Scholar 

  10. Garcia J, et al. 3D printing materials and their use in medical education: a review of current technology and trends for the future. BMJ Simul Technol Enhanced Learn. 2018;4(1):27–40.

    Google Scholar 

  11. Gbolahan Balogun W. Using electronic tools and resources to meet the challenges of anatomy education in sub-Saharan Africa: XXXX. Anat Sci Educ. 2019;12(1):97–104.

    PubMed  Google Scholar 

  12. Ravi P, et al. A systematic evaluation of medical 3D printing accuracy of multi-pathological anatomical models for surgical planning manufactured in elastic and rigid material using desktop inverted vat photopolymerization. Med Phys. 2021;48(6):3223–33.

    CAS  PubMed  Google Scholar 

  13. Jaksa L, et al. Development of a multi-material 3D printer for functional anatomic models. Int J Bioprint. 2021;7(4):420.

    PubMed  PubMed Central  Google Scholar 

  14. Coakley MF, et al. The NIH 3D print exchange: a public resource for bioscientific and biomedical 3D prints. 3D Print Addit Manuf. 2014;1(3):137–40.

    PubMed  Google Scholar 

  15. Bligh J. Problem-based learning in medicine: an introduction. Postgrad Med J. 1995;71(836):323–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan H, et al. Application of 3D printing technology combined with PBL teaching model in teaching clinical nursing in congenital heart surgery: a case-control study. Medicine. 2021;100(20):e25918.

    PubMed  PubMed Central  Google Scholar 

  17. Shi J, et al. 3D printing improve the effectiveness of fracture teaching and medical learning: a comprehensive scientometric assessment and future perspectives. Front Physiol. 2021;12:726591.

    PubMed  PubMed Central  Google Scholar 

  18. Ramesh P, et al. 3D printing ophthalmology related models for enhancing learning through the concept of puzzle assembly—a comprehensive self-learning tactile tool kit. Indian J Ophthalmol. 2022;70(4):1384.

    PubMed  PubMed Central  Google Scholar 

  19. Sommerhalder C, et al. Utilizing in-hospital fabrication to decrease simulation costs. J Surg Res. 2021;265:79–85.

    PubMed  Google Scholar 

  20. Feng J, et al. Three-dimensional printed model of impacted third molar for surgical extraction training. J Dent Educ. 2021;85(12):1828–36.

    Google Scholar 

  21. Chedid VG, et al. Three-dimensional-printed liver model helps learners identify hepatic subsegments: a randomized-controlled cross-over trial. Am J Gastroenterol. 2020;115(11):1906–10.

    PubMed  Google Scholar 

  22. Kong X, et al. Do 3D printing models improve anatomical teaching about hepatic segments to medical students? A randomized controlled study. World J Surg. 2016;40(8):1969–76.

    PubMed  Google Scholar 

  23. Etherton D, et al. 3D visualization and 3D printing in abnormal gastrointestinal system manifestations of situs ambiguus. Quant Imaging Med Surg. 2020;10(9):1877–83.

    PubMed  PubMed Central  Google Scholar 

  24. Ramirez MDJE, et al. Three-dimensional plastic modeling on bone frames for cost-effective neuroanatomy teaching. Cureus. 2022;14:e27472.

    PubMed  PubMed Central  Google Scholar 

  25. Bartikian M, et al. 3D printing anatomical models of head bones. Surg Radiol Anat. 2019;41(10):1205–9.

    CAS  PubMed  Google Scholar 

  26. Duda S, et al. The manufacturing of 3D printed models for the neurotraumatological education of military surgeons. Mil Med. 2020;185(11–12):e2013–9.

    PubMed  Google Scholar 

  27. Vatankhah R, et al. 3D printed models for teaching orbital anatomy, anomalies and fractures. J Ophthal Vis Res. 2021;16:611.

    Google Scholar 

  28. Choi YJ, et al. 3D-printed ophthalmic-retrobulbar-anesthesia simulator: mimicking anatomical structures and providing tactile sensations. IEEE J Transl Eng Health Med. 2021;9:1–6.

    Google Scholar 

  29. Jagan L, et al. Validation of a novel strabismus surgery 3D-printed silicone eye model for simulation training. J Am Assoc Pediatr Ophthalmol Strabismus. 2020;24(1):3.e1–6.

    Google Scholar 

  30. Mak M, et al. Novel open-source 3D-printed eye mount (TEMPO) for the ophthalmology wet lab. BMJ Open Ophthalmol. 2021;6(1):e000685.

    PubMed  PubMed Central  Google Scholar 

  31. Famery N, et al. Artificial chamber and 3D printed iris: a new wet lab model for teaching Descemet’s membrane endothelial keratoplasty. Acta Ophthalmol. 2019;97(2):e179.

    PubMed  Google Scholar 

  32. Nguyen Y, et al. Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching. Eur Arch Otorhinolaryngol. 2017;274(7):2733–9.

    PubMed  Google Scholar 

  33. Chen G, et al. Three-dimensional printing as a tool in otolaryngology training: a systematic review. J Laryngol Otol. 2020;134(1):14–9.

    CAS  PubMed  Google Scholar 

  34. Chiesa Estomba CM, González Fernández I, Iglesias Otero MÁ. How we do it: anterior and posterior nosebleed trainer, the 3D printing epistaxis project. Clin Otolaryngol. 2018;43(2):765–6.

    CAS  PubMed  Google Scholar 

  35. Gao RW, et al. To pack a nose: high-fidelity epistaxis simulation using 3D printing technology. Laryngoscope. 2022;132(4):747–53.

    PubMed  Google Scholar 

  36. Krishnasamy S, et al. 3D rapid prototyping heart model validation for teaching and training—a pilot project in a teaching institution. Braz J Cardiovasc Surg. 2021;36(5):707.

    PubMed  PubMed Central  Google Scholar 

  37. Salewski C, et al. The impact of 3D printed models on spatial orientation in echocardiography teaching. BMC Med Educ. 2022;22(1):180.

    PubMed  PubMed Central  Google Scholar 

  38. Yoo SJ, et al. 3D printing in medicine of congenital heart diseases. 3D Print Med. 2015;2:3. https://doi.org/10.1186/s41205-016-0004-x.

  39. Lau I, Sun Z. Three-dimensional printing in congenital heart disease: a systematic review. J Med Radiat Sci. 2018;65(3):226–36.

    PubMed  PubMed Central  Google Scholar 

  40. Cooke CM, et al. Individualized medicine using 3D printing technology in gynecology: a scoping review. 3D Print Med. 2023;9:6. https://doi.org/10.1186/s41205-023-00169-9.

  41. Kiesel M, et al. A 3D printed model of the female pelvis for practical education of gynecological pelvic examination. 3D Print Med. 2022;8:13. https://doi.org/10.1186/s41205-022-00139-7.

  42. Bartellas M, et al. Three-dimensional printing of a hemorrhagic cervical cancer model for postgraduate gynecological training. Cureus. 2017;9:e950.

    PubMed  PubMed Central  Google Scholar 

  43. AlAli AB, et al. Evaluating the use of cleft lip and palate 3D-printed models as a teaching aid. J Surg Educ. 2018;75(1):200–8.

    PubMed  Google Scholar 

  44. Lane JC, Black JS. Modeling medical education: the impact of three-dimensional printed models on medical student education in plastic surgery. J Craniofac Surg. 2020;31(4):1018–21.

    PubMed  Google Scholar 

  45. Cai B, et al. The effects of a functional three-dimensional (3D) printed knee joint simulator in improving anatomical spatial knowledge. Anat Sci Educ. 2019;12(6):610–8.

    PubMed  Google Scholar 

  46. Kanagasuntheram R, et al. A composite 3D printed model of the midcarpal joint. Anat Sci Int. 2019;94(1):158–62.

    CAS  PubMed  Google Scholar 

  47. Manganaro MS, et al. Creating three-dimensional printed models of acetabular fractures for use as educational tools. Radiographics. 2017;37(3):871–80.

    PubMed  Google Scholar 

  48. Risler Z, et al. A three-dimensional printed low-cost anterior shoulder dislocation model for ultrasound-guided injection training. Cureus. 2018;10:e3536.

    PubMed  PubMed Central  Google Scholar 

  49. Bow H, et al. A 3D-printed simulator and teaching module for placing S2-alar-iliac screws. Oper Neurosurg. 2020;18(3):339–46.

    Google Scholar 

  50. Baba M, et al. Development and evaluation of an original phantom model of ultrasonography-guided thyroid gland biopsy for the training of surgical residents and students. Surg Today. 2023;53(4):443–50.

    PubMed  Google Scholar 

  51. O’Reilly MK, et al. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine: subject specific 3D-printed anatomy. Anat Sci Educ. 2016;9(1):71–9.

    PubMed  Google Scholar 

  52. Goudie C, et al. The use of 3D printed vasculature for simulation-based medical education within interventional radiology. Cureus. 2019;11:e4381.

    PubMed  PubMed Central  Google Scholar 

  53. Höhne C, Schmitter M. 3D printed teeth for the preclinical education of dental students. J Dent Educ. 2019;83(9):1100–6.

    PubMed  Google Scholar 

  54. Reymus M, et al. 3D-printed model for hands-on training in dental traumatology. Int Endod J. 2018;51(11):1313–9.

    CAS  PubMed  Google Scholar 

  55. Werz SM, et al. 3D printed surgical simulation models as educational tool by maxillofacial surgeons. Eur J Dent Educ. 2018;22(3):e500–5.

    CAS  PubMed  Google Scholar 

  56. Höhne C, Rammler T, Schmitter M. 3D printed teeth with included veneer preparation guide. J Prosthodont. 2021;30(1):51–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajul Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chokshi, S., Huzaifa, I.B., Sriwastwa, A., Sheikh, A., Rybicki, F.J., Gupta, R. (2024). 3D Printing in Medical Education. In: Rybicki, F.J., Morris, J.M., Grant, G.T. (eds) 3D Printing at Hospitals and Medical Centers. Springer, Cham. https://doi.org/10.1007/978-3-031-42851-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42851-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42850-0

  • Online ISBN: 978-3-031-42851-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics