Skip to main content

Construction of a Bivariate \(C^2\) Septic Quasi-interpolant Using the Blossoming Approach

  • Chapter
  • First Online:
Applied Mathematics and Modelling in Finance, Marketing and Economics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1114))

  • 112 Accesses

Abstract

In this study, we employ a blossoming technique and smoothness criteria to devise a two-step method for creating a \(C^2\) septic spline quasi-interpolant on any given triangulation. This approach ensures an optimal approximation order without the need for coefficient masks associated with smoothness or B-spline basis. To demonstrate the validity of our theoretical findings, we provide numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbadi, A., Barrera, D., Ibáñez, M.J., Sbibih, D.: A general method for constructing quasi-interpolants from B-splines. J. Comput. Appl. Math. 234, 1324–1337 (2010)

    Article  MathSciNet  Google Scholar 

  2. Alfelf, P., Piper, B., Schumaker, L.L.: An explicit basis for \(C^1\) quartic bivariate splines. SIAM J. Numer. Anal. 24(4), 891–911 (1987)

    Article  MathSciNet  Google Scholar 

  3. Barrera, D., Ibáñez, M.J., Sbibih, D., Sablonnière, P.: Near-best quasi-interpolants associated with H-splines on a three-direction mesh. J. Comput. Appl. Math. 183, 133–152 (2005)

    Article  MathSciNet  Google Scholar 

  4. Barrera, D., Ibáñez, M.J., Sablonnière, P., Sbibih, D.: On near-best discrete quasi-interpolation on a four-directional mesh. J. Comput. Appl. Math. 233, 1470–1477 (2010)

    Article  MathSciNet  Google Scholar 

  5. Barrera, D., Guessab, A., Ibáñez, M.J., Nouisser, O.: Optimal bivariate \(C^{1}\) cubic quasi-interpolation on a type-2 triangulation. J. Comput. Appl. Math. 234, 1188–1199 (2010)

    Article  MathSciNet  Google Scholar 

  6. Barrera, D., Ibáñez, M.J.: Minimizing the quasi-interpolation error for bivariate discrete quasi-interpolants. J. Comput. Appl. Math. 224, 250–268 (2009)

    Article  MathSciNet  Google Scholar 

  7. Barry, P.J.: de Boor-Fix, functionals and polar forms. Comput. Aided Geom. Des. 7, 425–430 (1990)

    Article  MathSciNet  Google Scholar 

  8. de Casteljau, P.: Shape Mathematics and CAD. Kogan Ltd., London (1985)

    Google Scholar 

  9. Chen, G., Chui, C.K., Lai, M.J.: Construction of real-time spline quasi-interpolation schemes. Approx. Theory Appl. 4, 61–75 (1988)

    MathSciNet  Google Scholar 

  10. Chui, C.K., Hong, D.: Construction of local \(C^1\) quartic spline elements for optimal-order approximation. Math. Comput. 65(213), 85–98 (1996)

    Article  Google Scholar 

  11. Chui, C.K., Lai, M.J.: Computation of box splines and B-splines on triangulations of non-uniform rectangular partitions. J. Approx. Theory 3, 37–62 (1987)

    Google Scholar 

  12. Chung, K.C., Yao, T.H.: On a lattices admitting unique Lagrange interpolation. SIAM J. Numer. Math. Anal. 14, 735–743 (1977)

    Article  MathSciNet  Google Scholar 

  13. Dahmen, W., Micchelli, C.A., Seidel, H.-P.: Blossoming begets B-splines built better by B-patches. Math. Comput. 59, 97–115 (1992)

    MathSciNet  Google Scholar 

  14. de Boor, C.: On the evaluation of box splines. Numer. Algoritm. 5, 5–23 (1993)

    Article  MathSciNet  Google Scholar 

  15. de Boor, C.: The quasi-interpolant as a tool in elementary polynomial spline theory. In: Berens, H., Cheney, E.W., Lorentz, G.G., Schumaker, L.L. (eds.) Approximation Theory I, pp. 269–276. Academic Press, New York (1973)

    Google Scholar 

  16. Farin, G.: Triangular Bernstein-Bézier patches. Comput. Aided Geom. Des. 3, 19–27 (1986)

    Article  Google Scholar 

  17. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 5th edn. Morgan Kaufmann, San Mateo, CA (2001)

    Google Scholar 

  18. Franke, R.: A critical comparison of some methods for interpolation of scattered data, Naval Postgraduate School, Technical report, NPS–53–79–003 (1979)

    Google Scholar 

  19. R. Goldman, Blossoming and Divided Difference, Geometric Modelling, Volume 14 of the series Computing, pp. 155–184. Springer Vienna (2001)

    Google Scholar 

  20. Gormaz, R.: Floraisons polynomiales: applications à l’étude des B-splines à plusieurs variables. Université Joseph Fourier, Grenoble, Thèse de doctorat (1993)

    Google Scholar 

  21. Gormaz, R., Laurent, P.J.: Some results on blossoming and multivariate B-splines. In: Jetter, K., Utreras, F. (eds.) Multivariate Approximation and Wavelets, pp. 147–165. World Scientific, Singapore (1993)

    Chapter  Google Scholar 

  22. Kobbelt, L.: Stable evaluation of box splines. Numer. Algoritm. 14, 377–382 (1997)

    Article  MathSciNet  Google Scholar 

  23. Lai, M.J.: A characterisation theorem of multivariate splines in blossoming form. Comput. Aided Geom. Des. 8(6), 513–521 (1992)

    Article  Google Scholar 

  24. Lai, M.J.: Geometric interpretation of smoothness conditions of triangular polynomial patches. Comput. Aided Geom. Des. 14(2), 191–199 (1997)

    Article  MathSciNet  Google Scholar 

  25. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press (2007)

    Google Scholar 

  26. Lamnii, M., Mraoui, H., Tijini, A., Zidna, A.: A normalized basis for \(C^1\) cubic super spline space on Powell-Sabin triangulation. Math. Comput. Simul. 99, 108–124 (2014)

    Article  Google Scholar 

  27. Ramshaw, L.: Blossoming: a connect-the-dots approach to splines, Technical Report 19. Digital Systems Research Center, Palo Alto (1987)

    Google Scholar 

  28. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6, 323–358 (1989)

    Article  MathSciNet  Google Scholar 

  29. Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell-Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007)

    Article  MathSciNet  Google Scholar 

  30. Sbibih, D., Serghini, A., Tijini, A.: Polar forms and quadratic splines quasi-interpolants over Powell-Sabin triangulation. Appl. Num. Math. 59, 938–958 (2009)

    Article  Google Scholar 

  31. Sbibih, D., Serghini, A., Tijini, A.: Bivariate simplexe spline quasi-interpolants. Numer. Math. Theor. Meth. Appl. 3(1), 97–118 (2010)

    Article  Google Scholar 

  32. Sbibih, D., Serghini, A., Tijini, A.: Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants. BIT Numer. Math. 52, 221–249 (2012)

    Article  MathSciNet  Google Scholar 

  33. Sbibih, D., Serghini, A., Tijini, A.: Superconvergent quadratic spline quasi-interpolants over Powell-Sabin triangulation. Appl. Num. Math. 87, 74–86 (2015)

    Article  Google Scholar 

  34. Sbibih, D., Serghini, A., Tijini, A.: Superconvergent trivariate quadratic spline quasi-interpolants on Worsey-Piper split. J. Comput. Appl. Math. 276, 117–128 (2015)

    Article  MathSciNet  Google Scholar 

  35. Sbibih, D., Serghini, A., Tijini, A.: Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation. Appl. Math. Comput. 250, 145–156 (2015)

    MathSciNet  Google Scholar 

  36. Sbibih, D., Serghini, A., Tijini, A.: Superconvergent \(C^1\) Cubic Spline Quasi-interpolants on Powell-Sabin Partitions. BIT Numer. Math. 55(3), 797–821 (2015)

    Article  Google Scholar 

  37. Sbibih, D., Serghini, A., Tijini, A.: Trivariate spline quasi-interpolants based on simplex splines and polar forms. Math. Comput. Simul. 118, 343–359 (2015)

    Article  MathSciNet  Google Scholar 

  38. Serghini, A., Tijini, A.: New approach to study splines by blossoming method and application to the construction of a bivariate \(C^1\) quartic quasi-interpolant, Comput. Math. Appl. 71, 529–543 (2016)

    MathSciNet  Google Scholar 

  39. Seidel, H.P.: Polar forms and triangular B-splines surfaces, in Blossoming: the New polar Form Approach to Spline Curves and Surfaces SIGGRAPH 91, Course Notes #26, ACM SIGGRAPH (1991)

    Google Scholar 

  40. Seidel, H.P.: Representing piecewise polynomials as linear combinations of multivariate B-splines. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in Computer Aided Geometric Design, pp. 559–566. Academic Press, New York (1992)

    Chapter  Google Scholar 

  41. Stefanus, Y., Goldman, R.N.: Blossoming Marsden’s identity. Comput. Aided Geom. Des. 9, 73–84 (1992)

    Article  MathSciNet  Google Scholar 

  42. Sorokina, T., Zeilfelder, F.: Optimal quasi-interpolation by quadratic \(C^1\) splines on four-directional meshes. In: Chui, C., et al. (eds.) Approximation Theory XI: Gatlinburg 2004, pp. 423–438. Nashboro Press, Brentwood, TN (2005)

    Google Scholar 

  43. Sorokina, T., Zeilfelder, F.: An explicit quasi-interpolation scheme based on \(C^1\) quartic splines on type-\(1\) triangulations. Comput. Aided Geom. Des. 25, 1–13 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdlemajid El Hajaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serghini, A., El Hajaji, A., Charhabil, A. (2024). Construction of a Bivariate \(C^2\) Septic Quasi-interpolant Using the Blossoming Approach. In: Melliani, S., Castillo, O., El Hajaji, A. (eds) Applied Mathematics and Modelling in Finance, Marketing and Economics. Studies in Computational Intelligence, vol 1114. Springer, Cham. https://doi.org/10.1007/978-3-031-42847-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42847-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42846-3

  • Online ISBN: 978-3-031-42847-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics