Skip to main content

Principles, Sites and Techniques of Vascular Access

  • Chapter
  • First Online:
Mastering Endovascular Techniques

Abstract

The establishment of a safe and secure vascular access is crucial for any endovascular procedure. It can occasionally be difficult and if not performed correctly, may result in serious complications. Imaging technology, newer hardware, and novel techniques have made vascular access much easier and safer today. Despite this, our understanding of these technologies continues to evolve as newer studies provide data. This chapter discusses the latest developments in vascular access routes, techniques, and potential complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierre L, Pasrija D, Keenaghan M. Arterial lines. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. [cited 2022 Jul 17]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK499989/.

    Google Scholar 

  2. Heiss HW, Hurst JW. Werner forssmann: A German problem with the Nobel prize. Clin Cardiol. 1992;15(7):547–9.

    Article  CAS  PubMed  Google Scholar 

  3. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography: a new technique. Acta Radiol. 1953;39(5):368–76.

    Article  CAS  PubMed  Google Scholar 

  4. Schnyder G, Sawhney N, Whisenant B, Tsimikas S, Turi ZG. Common femoral artery anatomy is influenced by demographics and comorbidity: implications for cardiac and peripheral invasive studies. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv. 2001;53(3):289–95.

    Article  CAS  Google Scholar 

  5. Baum PA, Matsumoto AH, Teitelbaum GP, Zuurbier RA, Barth KH. Anatomic relationship between the common femoral artery and vein: CT evaluation and clinical significance. Radiology. 1989;173(3):775–7.

    Article  CAS  PubMed  Google Scholar 

  6. Barbetta I, van den Berg JC. Access and hemostasis: femoral and popliteal approaches and closure devices—why, what, when, and how? Semin Interv Radiol. 2014;31(4):353–60.

    Article  Google Scholar 

  7. Grier D, Hartnell G. Percutaneous femoral artery puncture: practice and anatomy. Br J Radiol. 1990;63(752):602–4.

    Article  CAS  PubMed  Google Scholar 

  8. Fitts J, Ver Lee P, Hofmaster P, Malenka D, Northern New England Cardiovascular Study Group. Fluoroscopy-guided femoral artery puncture reduces the risk of PCI-related vascular complications. J Interv Cardiol. 2008;21(3):273–8.

    Article  PubMed  Google Scholar 

  9. Sorrentino S, Nguyen P, Salerno N, Polimeni A, Sabatino J, Makris A, et al. Standard versus ultrasound-guided cannulation of the femoral artery in patients undergoing invasive procedures: a meta-analysis of randomized controlled trials. J Clin Med. 2020;9(3):677.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Seto AH, Abu-Fadel MS, Sparling JM, Zacharias SJ, Daly TS, Harrison AT, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (Femoral Arterial Access With Ultrasound Trial). JACC Cardiovasc Interv. 2010;3(7):751–8.

    Article  PubMed  Google Scholar 

  11. Nguyen P, Makris A, Hennessy A, Jayanti S, Wang A, Park K, et al. Outcomes in femoral access patients with large abdominal circumference. Heart Lung Circ. 2019;1(28):S415–6.

    Article  Google Scholar 

  12. Kim M, Kim MA, Kim HL, Lee WJ, Lim WH, Seo JB, et al. Body mass index and the risk of low femoral artery puncture in coronary angiography under fluoroscopy guidance. Medicine (Baltimore). 2018;97(9):e0070.

    Article  PubMed  Google Scholar 

  13. Campeau L. Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn. 1989;16(1):3–7.

    Article  CAS  Google Scholar 

  14. Kiemeneij F, Laarman GJ, Odekerken D, Slagboom T, van der Wieken R. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study. J Am Coll Cardiol. 1997;29(6):1269–75.

    Article  CAS  PubMed  Google Scholar 

  15. Mehta SR, Jolly SS, Cairns J, Niemela K, Rao SV, Cheema AN, et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol. 2012;60(24):2490–9.

    Article  PubMed  Google Scholar 

  16. Romagnoli E, Biondi-Zoccai G, Sciahbasi A, Politi L, Rigattieri S, Pendenza G, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol. 2012;60(24):2481–9.

    Article  PubMed  Google Scholar 

  17. Valgimigli M, Gagnor A, Calabró P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465–76.

    Article  PubMed  Google Scholar 

  18. Mason PJ, Shah B, Tamis-Holland JE, Bittl JA, Cohen MG, Safirstein J, et al. An update on radial artery access and best practices for transradial coronary angiography and intervention in acute coronary syndrome: a scientific statement from the American Heart Association. Circ Cardiovasc Interv. 2018;11(9):e000035.

    Article  PubMed  Google Scholar 

  19. Titano JJ, Biederman DM, Marinelli BS, Patel RS, Kim E, Tabori NE, et al. Safety and feasibility of transradial access for visceral interventions in patients with thrombocytopenia. Cardiovasc Intervent Radiol. 2016;39(5):676–82.

    Article  CAS  PubMed  Google Scholar 

  20. Yamada R, Bracewell S, Bassaco B, Camacho J, Anderson MB, Conrad A, et al. Transradial versus transfemoral arterial access in liver cancer embolization: randomized trial to assess patient satisfaction. J Vasc Interv Radiol. 2018;29(1):38–43.

    Article  PubMed  Google Scholar 

  21. Bertrand OF, Carey PC, Gilchrist IC. Allen or no Allen: that is the question! J Am Coll Cardiol. 2014;63(18):1842–4.

    Article  PubMed  Google Scholar 

  22. Nairoukh Z, Jahangir S, Adjepong D, Malik BH. Distal radial artery access: the future of cardiovascular intervention. Cureus. 12(3):e7201.

    Google Scholar 

  23. Kristić I, Lukenda J. Radial artery spasm during transradial coronary procedures. J Invasive Cardiol. 2011;23(12):527–31.

    PubMed  Google Scholar 

  24. Ruiz-Salmerón RJ, Mora R, Vélez-Gimón M, Ortiz J, Fernández C, Vidal B, et al. Radial artery spasm in transradial cardiac catheterization. Assessment of factors related to its occurrence, and of its consequences during follow-up. Rev Esp Cardiol. 2005;58(5):504–11.

    Article  PubMed  Google Scholar 

  25. Deftereos S, Giannopoulos G, Kossyvakis C, Driva M, Kaoukis A, Raisakis K, et al. Radial artery flow-mediated dilation predicts arterial spasm during transradial coronary interventions. Catheter Cardiovasc Interv. 2011;77(5):649–54.

    Article  PubMed  Google Scholar 

  26. Rathore S, Stables RH, Pauriah M, Hakeem A, Mills JD, Palmer ND, et al. Impact of length and hydrophilic coating of the introducer sheath on radial artery spasm during transradial coronary intervention: a randomized study. JACC Cardiovasc Interv. 2010;3(5):475–83.

    Article  PubMed  Google Scholar 

  27. Dieter RS, Akef A, Wolff M. Eversion endarterectomy complicating radial artery access for left heart catheterization. Catheter Cardiovasc Interv. 2003;58(4):478–80.

    Article  PubMed  Google Scholar 

  28. Lee KS, Sos TA. Brachial artery access. Tech Vasc Interv Radiol. 2015;18(2):87–92.

    Article  Google Scholar 

  29. Mantripragada K, Abadi K, Echeverry N, Shah S, Snelling B. Transbrachial access site complications in endovascular interventions: a systematic review of the literature. Cureus. 14(6):e25894.

    Google Scholar 

  30. Lupattelli T, Clerissi J, Clerici G, Minnella DP, Casini A, Losa S, et al. The efficacy and safety of closure of brachial access using the AngioSeal closure device: experience with 161 interventions in diabetic patients with critical limb ischemia. J Vasc Surg. 2008;47(4):782–8.

    Article  PubMed  Google Scholar 

  31. Iyer SS, Dorros G, Zaitoun R, Lewin RF. Retrograde recanalization of an occluded posterior tibial artery by using a posterior tibial cutdown: two case reports. Catheter Cardiovasc Diagn. 1990;20(4):251–3.

    Article  CAS  Google Scholar 

  32. Grözinger G, Hallecker J, Grosse U, Syha R, Ketelsen D, Brechtel K, et al. Tibiopedal and distal femoral retrograde vascular access for challenging chronic total occlusions: predictors for technical success, and complication rates in a large single-center cohort. Eur Radiol. 2021;31(1):535–42.

    Article  PubMed  Google Scholar 

  33. Giannopoulos S, Palena LM, Armstrong EJ. Technical success and complication rates of retrograde arterial access for endovascular therapy for critical limb ischaemia: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2021;61(2):270–9.

    Article  PubMed  Google Scholar 

  34. Sanghvi KA, Kusick J, Krathen C. Retrograde tibio-pedal access for revascularization of lower-extremity peripheral artery disease using a 6 Fr slender sheath: the “Pedal-First” pilot project. Cath Lab Dig. 2018;26(10). Available from https://www.hmpgloballearningnetwork.com/site/cathlab/article/retrograde-tibio-pedal-access-revascularization-lower-extremity-peripheral-artery-disease. [cited 2022 Aug 28].

  35. Saugel B, Scheeren TWL, Teboul JL. Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice. Crit Care. 2017;28(21):225.

    Article  Google Scholar 

  36. Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst Rev. 2015; [cited 2022 Sep 4];(1). Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD006962.pub2/full

  37. Ripal T, Gandhi MD. Management of inadvertent placement of a central line in the carotid artery with a closure device and embolic protection device. Cath Lab Dig. 2016; [cited 2022 Sep 3];24(11). Available from: https://www.hmpgloballearningnetwork.com/site/cathlab/article/management-inadvertent-placement-central-line-carotid-artery-closure-device-embolic

  38. Marik PE, Flemmer M, Harrison W. The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med. 2012;40(8):2479–85.

    Article  PubMed  Google Scholar 

  39. Parienti JJ, Mongardon N, Mégarbane B, Mira JP, Kalfon P, Gros A, et al. Intravascular complications of central venous catheterization by insertion site. N Engl J Med. 2015;373(13):1220–9.

    Article  CAS  PubMed  Google Scholar 

  40. Youn SH, Lee JCJ, Kim Y, Moon J, Choi Y, Jung K. Central venous catheter-related infection in severe trauma patients. World J Surg. 2015;39(10):2400–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization. Cochrane Database Syst Rev. 2015; [cited 2022 Sep 4];(1). Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011447/full

  42. Nazir A, Niazi K, Zaidi SMJ, Ali M, Maqsood S, Malik J, et al. Success rate and complications of the supraclavicular approach for central venous access: a systematic review. Cureus. 2022;14(4):e23781.

    PubMed  PubMed Central  Google Scholar 

  43. Kim YJ, Ma S, Yoon HK, Lee HC, Park HP, Oh H. Supraclavicular versus infraclavicular approach for ultrasound-guided right subclavian venous catheterisation: a randomised controlled non-inferiority trial. Anaesthesia. 2022;77(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  44. Bannon MP, Heller SF, Rivera M. Anatomic considerations for central venous cannulation. Risk Manag Healthc Policy. 2011;13(4):27–39.

    Article  Google Scholar 

  45. Bodenham A. Reducing major procedural complications from central venous catheterisation. Anaesthesia. 2011;66(1):6–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Manoharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manoharan, D., Karunanithy, N. (2024). Principles, Sites and Techniques of Vascular Access. In: Geroulakos, G., Avgerinos, E., Becquemin, J.P., Makris, G.C., Froio, A. (eds) Mastering Endovascular Techniques. Springer, Cham. https://doi.org/10.1007/978-3-031-42735-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42735-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42734-3

  • Online ISBN: 978-3-031-42735-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics