Skip to main content

circTIS: A Weighted Degree String Kernel with Support Vector Machine Tool for Translation Initiation Sites Prediction in circRNA

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2023)

Abstract

Recent studies discovered that peptides generated from the translation of circRNAs participate in several biological processes, many related to human diseases. Researchers have observed that initiation of translation in circRNAs frequently occurs from non-AUG start codons. However, most existing computational tools for translation initiation site (TIS) prediction consider only the canonical AUG start codon. Thus, we developed a new methodology for predicting TIS AUG and near-cognates, considering the circularization of ORFs occurring in circRNAs. Initially, we used the weighted degree string kernel to create a data representation of the circRNA sequence fragments around possible TIS. Next, we applied a support vector machine to calculate a score representing the potential of the sequence fragment to contain an actual TIS. We used datasets from annotated TIS on circRNAs sequences to train and test our methodology. The first experiment showed that the sequence fragment length is the best value for the kernel’s degree hyperparameter. Next, we investigated the most suitable sequence fragment length. Finally, we compared our methodology with three tools, TITER, TIS Predictor, and TIS Transformer. For TIS AUG prediction, circTIS obtained an AUROC of 98.64%, while TITER, TIS Predictor, and TIS Transformer obtained 78.97%, 78.39%, and 81.3%, respectively. For the TIS near-cognate prediction, our method obtained an AUROC equal to 96.84%, while TITER, TIS Predictor, and TIS Transformer got 81.37%, 72.68%, and 66.33%, respectively. We implemented our methodology in the circTIS tool, freely available at https://github.com/denilsonfbar/circTIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, N., et al.: Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 1–9 (2015). https://doi.org/10.1038/srep16435

    Article  CAS  Google Scholar 

  2. Aufiero, S., Reckman, Y.J., Pinto, Y.M., Creemers, E.E.: Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol. 16(8), 503–514 (2019). https://doi.org/10.1038/s41569-019-0185-2

    Article  PubMed  Google Scholar 

  3. Chen, C.Y., Sarnow, P.: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209), 415–417 (1995). https://doi.org/10.1126/science.7536344. www.science.org/doi/10.1126/science.7536344

  4. Clauwaert, J., McVey, Z., Gupta, R., Menschaert, G.: TIS transformer: remapping the human proteome using deep learning. NAR Genom. Bioinform. 5(1), 1–8 (2023). https://doi.org/10.1093/nargab/lqad021

    Article  CAS  Google Scholar 

  5. Fang, Y., et al.: Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int. J. Mol. Med. 42(4), 1865–1874 (2018). https://doi.org/10.3892/ijmm.2018.3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gleason, A.C., Ghadge, G., Chen, J., Sonobe, Y., Roos, R.P.: Machine learning predicts translation initiation sites in neurologic diseases with nucleotide repeat expansions. PLoS ONE 17(6 June), 1–30 (2022). https://doi.org/10.1371/journal.pone.0256411. www.dx.doi.org/10.1371/journal.pone.0256411

  7. Hanan, M., Soreq, H., Kadener, S.: CircRNAs in the brain. RNA Biol. 14(8), 1028–1034 (2017). https://doi.org/10.1080/15476286.2016.1255398

    Article  PubMed  Google Scholar 

  8. Huang, W., et al.: TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res. 49(D1), D236–D242 (2021). https://doi.org/10.1093/nar/gkaa823

    Article  CAS  PubMed  Google Scholar 

  9. Jeck, W.R., et al.: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2), 141–157 (2013). https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kristensen, L.S., Andersen, M.S., Stagsted, L.V., Ebbesen, K.K., Hansen, T.B., Kjems, J.: The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20(11), 675–691 (2019). https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  11. Li, H., et al.: Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clinica Chimica Acta 480(Jan), 17–25 (2018). https://doi.org/10.1016/j.cca.2018.01.026

  12. Memczak, S., et al.: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013). https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  13. Patop, I.L., Wüst, S., Kadener, S.: Past, present, and future of circRNAs. EMBO J. 38(16), 1–13 (2019). https://doi.org/10.15252/embj.2018100836

  14. Qi, R., Guo, F., Zou, Q.: String kernels construction and fusion: a survey with bioinformatics application. Front. Comput. Sci. 16(6), 166904 (2022). https://doi.org/10.1007/s11704-021-1118-x

    Article  Google Scholar 

  15. Ratsch, G., Sonnenburg, S.: Accurate splice site detection for Caenorhabditis Elegans. In: Kernel Methods in Computational Biology. The MIT Press (2004). https://doi.org/10.7551/mitpress/4057.003.0018

  16. Reuter, K., Biehl, A., Koch, L., Helms, V.: PreTIS: a tool to predict non-canonical 5’ UTR translational initiation sites in human and mouse. PLoS Comput. Biol. 12(10), 1–22 (2016). https://doi.org/10.1371/journal.pcbi.1005170

    Article  CAS  Google Scholar 

  17. Schölkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge (2018). https://doi.org/10.7551/mitpress/4175.001.0001. www.direct.mit.edu/books/book/1821/learning-with-kernelssupport-vector-machines

  18. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511809682. www.cambridge.org/core/product/identifier/9780511809682/type/book

  19. Shi, Y., Jia, X., Xu, J.: The new function of circRNA: translation. Clin. Transl. Oncol. 22(12), 2162–2169 (2020). https://doi.org/10.1007/s12094-020-02371-1

    Article  CAS  PubMed  Google Scholar 

  20. Sinha, T., Panigrahi, C., Das, D., Chandra Panda, A.: Circular RNA translation, a path to hidden proteome. Wiley Interdiscip. Rev. RNA 13(1), 1–15 (2021). https://doi.org/10.1002/wrna.1685

    Article  CAS  Google Scholar 

  21. Sonnenburg, S., et al.: The Shogun machine learning toolbox. J. Mach. Learn. Res. 11(June), 1799–1802 (2010)

    Google Scholar 

  22. Vo, J.N., et al.: The landscape of circular RNA in cancer. Cell 176(4), 869–881.e13 (2019). https://doi.org/10.1016/j.cell.2018.12.021. www.linkinghub.elsevier.com/retrieve/pii/S0092867418316350

  23. Vromman, M., Vandesompele, J., Volders, P.J.: Closing the circle: current state and perspectives of circular RNA databases. Brief. Bioinform. 22(1), 288–297 (2021). https://doi.org/10.1093/bib/bbz175

    Article  CAS  PubMed  Google Scholar 

  24. Wan, J., Qian, S.B.: TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res. 42(D1), 845–850 (2014). https://doi.org/10.1093/nar/gkt1085

    Article  CAS  Google Scholar 

  25. Zhang, S., Hu, H., Jiang, T., Zhang, L., Zeng, J.: TITER: predicting translation initiation sites by deep learning. Bioinformatics 33(14), i234–i242 (2017). https://doi.org/10.1093/bioinformatics/btx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Yoshiaki Kashiwabara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbosa, D.F., Oliveira, L.S., Kashiwabara, A.Y. (2023). circTIS: A Weighted Degree String Kernel with Support Vector Machine Tool for Translation Initiation Sites Prediction in circRNA. In: Reis, M.S., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2023. Lecture Notes in Computer Science(), vol 13954. Springer, Cham. https://doi.org/10.1007/978-3-031-42715-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42715-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42714-5

  • Online ISBN: 978-3-031-42715-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics