Skip to main content

Block Interchange and Reversal Distance on Unbalanced Genomes

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13954))

Included in the following conference series:

  • 245 Accesses

Abstract

One method for inferring the evolutionary distance between two organisms is to find the rearrangement distance, which is defined as the minimum number of genome rearrangements required to transform one genome into the other. Rearrangements that do not alter the genome content are known as conservative. Examples of such rearrangements include: reversal, which reverts a segment of the genome; transposition, which exchanges two consecutive blocks; block interchange (BI), which exchanges two blocks at any position in the genome; and double cut and join (DCJ), which cuts two different pairs of adjacent blocks and joins them in a different manner. Initially, works in this area involved comparing genomes that shared the same set of conserved blocks. Nowadays, researchers are investigating unbalanced genomes (genomes with a distinct set of genes), which requires the use of non-conservative rearrangements such as insertions and deletions (indels). In cases where there are no repeated blocks and the genomes have the same set of blocks, the BI Distance and the Reversal Distance have polynomial-time algorithms, while the complexity of the BI and Reversal Distance problem remains unknown. In this study, we investigate the BI and Indel Distance and the BI, Reversal, and Indel Distance on genomes with different gene content and no repeated genes. We present 2-approximation algorithms for each problem using a variant of the breakpoint graph structure.

This work was supported by the National Council of Technological and Scientific Development, CNPq (grants 140272/2020-8, 202292/2020-7 and 425340/2016-3), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and the São Paulo Research Foundation, FAPESP (grants 2013/08293-7, 2015/11937-9, 2019/27331-3, 2021/13824-8, and 2022/13555-0).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Genome rearrangement distance with reversals, transpositions, and indels. J. Comput. Biol. 28(3), 235–247 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Labeled cycle graph for transposition and indel distance. J. Comput. Biol. 29(03), 243–256 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996)

    Article  Google Scholar 

  4. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discret. Math. 11(2), 224–240 (1998)

    Article  Google Scholar 

  5. Braga, M.D., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18(9), 1167–1184 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J. Discret. Math. 26(3), 1148–1180 (2012)

    Article  Google Scholar 

  7. Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions. SIAM J. Discret. Math. 12(1), 91–110 (1999)

    Article  Google Scholar 

  8. Chen, X.: On sorting permutations by double-cut-and-joins. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 439–448. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14031-0_47

    Chapter  Google Scholar 

  9. Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–169 (1996)

    Article  Google Scholar 

  10. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 222–234. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_20

    Chapter  Google Scholar 

  11. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of Genome Rearrangements. Computational Molecular Biology. The MIT Press, London (2009)

    Google Scholar 

  12. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  Google Scholar 

  13. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13, 180–210 (1995)

    Article  Google Scholar 

  14. Willing, E., Stoye, J., Braga, M.: Computing the inversion-indel distance. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(6), 2314–2326 (2021)

    Article  CAS  Google Scholar 

  15. Willing, E., Stoye, J., Braga, M.D.: Computing the inversion-indel distance. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(6), 2314–2326 (2020)

    Article  Google Scholar 

  16. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexsandro Oliveira Alexandrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexandrino, A.O., Siqueira, G., Brito, K.L., Oliveira, A.R., Dias, U., Dias, Z. (2023). Block Interchange and Reversal Distance on Unbalanced Genomes. In: Reis, M.S., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2023. Lecture Notes in Computer Science(), vol 13954. Springer, Cham. https://doi.org/10.1007/978-3-031-42715-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42715-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42714-5

  • Online ISBN: 978-3-031-42715-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics