Skip to main content

Approximate Constrained Lumping of Polynomial Differential Equations

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2023)

Abstract

In life sciences, deriving insights from dynamic models can be challenging due to the large number of state variables involved. To address this, model reduction techniques can be used to project the system onto a lower-dimensional state space. Constrained lumping can reduce systems of ordinary differential equations with polynomial derivatives up to linear combinations of the original variables while preserving specific output variables of interest. Exact reductions may be too restrictive in practice for biological systems since quantitative information is often uncertain or subject to estimations and measurement errors. This might come at the cost of limiting the actual aggregation power of exact reduction techniques. We propose an extension of exact constrained lumping which relaxes the exactness requirements up to a given tolerance parameter \(\varepsilon \). We prove that the accuracy, i.e., the difference between the output variables in the original and reduced model, is in the order of \(\varepsilon \). Furthermore, we provide a heuristic algorithm to find the smallest \(\varepsilon \) for a given maximal approximation error. Finally, we demonstrate the approach in biological models from the literature by providing coarser aggregations than exact lumping while accurately capturing the original system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, A., Andriushchenko, R., Ceska, M., Kwiatkowska, M.: Adaptive formal approximations of Markov chains. Perform. Evaluation 148 (2021)

    Google Scholar 

  2. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM (2005)

    Google Scholar 

  3. Apri, M., de Gee, M., Molenaar, J.: Complexity reduction preserving dynamical behavior of biochemical networks. J. Theor. Biol. 304, 16–26 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Babtie, A., Stumpf, M.: How to deal with parameters for whole-cell modelling. J. Roy. Soc. Interface 14(133), 20170237 (2017)

    Article  Google Scholar 

  5. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. In: N. Piterman and S. A. Smolka, editors, TACAS, vol. 7795. LNCS, pp. 1–15 (2013)

    Google Scholar 

  6. Backenköhler, M., Bortolussi, L., Großmann, G., Wolf, V.: Abstraction-guided truncations for stationary distributions of Markov population models. In: QEST, pp. 351–371 (2021)

    Google Scholar 

  7. Barnat, J., Beneš, N., Brim, L., Demko, M., Hajnal, M., Pastva, S., Šafránek, D.: Detecting attractors in biological models with uncertain parameters. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 40–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_3

    Chapter  Google Scholar 

  8. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Borisov, N.M., Chistopolsky, A.S., Faeder, J.R., Kholodenko, B.N.: Domain-oriented reduction of rule-based network models. IET Syst. Biol. 2(5), 342–351 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Cairoli, F., Carbone, G., Bortolussi, L.: Abstraction of Markov population dynamics via generative adversarial nets. In: Cinquemani, E., Paulevé, L. (eds.) CMSB 2021. LNCS, vol. 12881, pp. 19–35. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85633-5_2

    Chapter  Google Scholar 

  11. Cardelli, L.: From processes to odes by chemistry. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Fifth Ifip International Conference on Theoretical Computer Science - Tcs 2008 (2008)

    Google Scholar 

  12. Cardelli, L., Pérez-Verona, I.C., Tribastone, M., Tschaikowski, M., Vandin, A., Waizmann, T.: Exact maximal reduction of stochastic reaction networks by species lumping. Bioinform. 37(15), 2175–2182 (2021)

    Article  CAS  Google Scholar 

  13. Cardelli, L., Tribastone, M., Tschaikowski, M.: From electric circuits to chemical networks. Nat. Comput. 19(1), 237–248 (2020)

    Article  Google Scholar 

  14. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)

    Google Scholar 

  15. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical reaction networks: a categorical and algorithmic perspective. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, July 5–8, 2016, pp. 485–494. ACM, New York (2016)

    Google Scholar 

  16. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_19

    Chapter  Google Scholar 

  17. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Guaranteed error bounds on approximate model abstractions through reachability analysis. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 104–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_7

    Chapter  Google Scholar 

  19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. Theoret. Comput. Sci. 777, 132–154 (2019)

    Article  Google Scholar 

  20. Daca, P., Henzinger, T.A., Kretínský, J., Petrov, T.: Linear distances between Markov chains. In: Desharnais, J., Jagadeesan, R. (eds.) CONCUR, vol. 59. LIPIcs, pp. 20:1–20:15 (2016)

    Google Scholar 

  21. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. PNAS 106(16), 6453–6458 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Großmann, G., Kyriakopoulos, C., Bortolussi, L., Wolf, V.: Lumping the approximate master equation for multistate processes on complex networks. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 157–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_10

    Chapter  Google Scholar 

  23. Helfrich, M., Ceska, M., Kretínský, J., Marticek, S.: Abstraction-based segmental simulation of chemical reaction networks. In: Petre, I., Paun, A. (eds.) CMSB, vol. 13447, pp. 41–60 (2022)

    Google Scholar 

  24. Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: from individuals to populations. Comput. J. 55(7), 866–881 (2011)

    Article  Google Scholar 

  25. Hogg, J.S., Harris, L.A., Stover, L.J., Nair, N.S., Faeder, J.R.: Exact hybrid particle/population simulation of rule-based models of biochemical systems. PLOS Comput. Biol. 10(4), e1003544, April 2014. Publisher: Public Library of Science

    Google Scholar 

  26. Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent types. In: 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 1–11, June 2013. ISSN: 2158–3927

    Google Scholar 

  27. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  Google Scholar 

  28. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem. Eng. Sci. 44(6), 1413–1430 (1989)

    Article  CAS  Google Scholar 

  29. Li, G., Rabitz, H.: A general analysis of approximate lumping in chemical kinetics. Chem. Eng. Sci. 45(4), 977–1002 (1990)

    Article  CAS  Google Scholar 

  30. Li, G., Rabitz, H.: New approaches to determination of constrained lumping schemes for a reaction system in the whole composition space. Chem. Eng. Sci. 46(1), 95–111 (1991)

    Article  CAS  Google Scholar 

  31. Mu, F., Williams, R.F., Unkefer, C.J., Unkefer, P.J., Faeder, J.R., Hlavacek, W.S.: Carbon-fate maps for metabolic reactions. Bioinformatics (Oxford, England) 23(23), 3193–3199 (2007)

    CAS  PubMed  Google Scholar 

  32. Okino, M., Mavrovouniotis, M.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 2(98), 391–408 (1998)

    Article  Google Scholar 

  33. Ovchinnikov, A., Pérez Verona, I., Pogudin, G., Tribastone, M.: CLUE: exact maximal reduction of kinetic models by constrained lumping of differential equations. Bioinformatics 37(12), 1732–1738, June 2021

    Google Scholar 

  34. Pérez-Verona, I.C., Tribastone, M., Vandin, A.: A large-scale assessment of exact model reduction in the BioModels repository. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 248–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_13

    Chapter  Google Scholar 

  35. Radulescu, O., Gorban, A.N., Zinovyev, A., Noel, V.: Reduction of dynamical biochemical reactions networks in computational biology. Front. Genet. 3, 131 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Repin, D., Petrov, T.: Automated deep abstractions for stochastic chemical reaction networks. Inf. Comput. 281, 104788 (2021)

    Article  Google Scholar 

  37. Salazar, C., Höfer, T.: Multisite protein phosphorylation – from molecular mechanisms to kinetic models. FEBS J. 276(12), 3177–3198 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, H., Madsen, M., Danø, S., Cedersund, G.: Complexity reduction of biochemical rate expressions. Bioinformatics 24(6), 848–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. Segel, L., Slemrod, M.: The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31(3), 446–477 (1989)

    Article  Google Scholar 

  40. Snowden, T., van der Graaf, P., Tindall, M.: Methods of model reduction for large-scale biological systems: a survey of current methods and trends. Bull. Math. Biol. 79(7), 1449–1486 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sunnaker, M., Cedersund, G., Jirstrand, M.: A method for zooming of nonlinear models of biochemical systems. BMC Syst. Biol. 5(1), 140 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Egac: a genetic algorithm to compare chemical reaction networks. In: GECCO, GECCO 2017, p. 833–840 (2017)

    Google Scholar 

  43. Tomlin, A.S., Li, G., Rabitz, H., Tóth, J.: The effect of lumping and expanding on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997). Publisher: Society for Industrial and Applied Mathematics

    Google Scholar 

  44. Tribastone, M.: Behavioral relations in a process algebra for variants. In: Gnesi, S., Fantechi, A., Heymans, P., Rubin, J., Czarnecki, K., Dhungana, D. (eds.) SPLC, pp. 82–91. ACM (2014)

    Google Scholar 

  45. Troják, M., Safránek, D., Pastva, S., Brim, L.: Rule-based modelling of biological systems using regulated rewriting. Biosyst. 225, 104843 (2023)

    Article  Google Scholar 

  46. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability in Markovian process algebra. Theoret. Comput. Sci. 538, 140–166 (2014)

    Article  Google Scholar 

  47. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogeneous nonlinear models with differential hulls. IEEE TAC (2016)

    Google Scholar 

  48. Tschaikowski, M., Tribastone, M.: Spatial fluid limits for stochastic mobile networks. Perform. Evaluation 109, 52–76 (2017)

    Article  Google Scholar 

  49. Vallabhajosyula, R., Chickarmane, V., Sauro, H.: Conservation analysis of large biochemical networks. Bioinformatics 22(3), 346–353 (2005)

    Article  PubMed  Google Scholar 

  50. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomathematics 2013, 53 (2013)

    Article  Google Scholar 

  51. Whitby, M., Cardelli, L., Kwiatkowska, M., Laurenti, L., Tribastone, M., Tschaikowski, M.: PID control of biochemical reaction networks. IEEE Trans. Autom. Control 67(2), 1023–1030 (2022)

    Article  Google Scholar 

  52. Wirsing, M., et al.: Sensoria patterns: augmenting service engineering with formal analysis, transformation and dynamicity. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation, pp. 170–190 (2008)

    Google Scholar 

Download references

Acknowledgment

The work was partially supported by the DFF project REDUCTO 9040-00224B, the Poul Due Jensen Grant 883901, the Villum Investigator Grant S4OS, the PRIN project SEDUCE 2017TWRCNB and the co-funding of European Union - Next Generation EU, in the context of The National Recovery and Resilience Plan, Investment 1.5 Ecosystems of Innovation, Project Tuscany Health Ecosystem (THE), CUP: B83C22003920001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Leguizamon-Robayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leguizamon-Robayo, A., Jiménez-Pastor, A., Tribastone, M., Tschaikowski, M., Vandin, A. (2023). Approximate Constrained Lumping of Polynomial Differential Equations. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42697-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42696-4

  • Online ISBN: 978-3-031-42697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics