Skip to main content

Brain Tumor Segmentation Based on Zernike Moments, Enhanced Ant Lion Optimization, and Convolutional Neural Network in MRI Images

  • Chapter
  • First Online:
Metaheuristics and Optimization in Computer and Electrical Engineering

Abstract

Gliomas that form in glial cells in the spinal cord and brain are the most aggressive and common kinds of brain tumors (intra-axial brain tumors) due to their rapid progression and infiltrative nature. The procedure of recognizing tumor margins from healthy tissues is still an arduous and time-consuming task in the clinical routine. In this study, a robust and efficient machine learning-based pipeline is suggested for brain tumor segmentation. Moreover, we employ four MRI modalities for increasing the final accuracy of the segmentation results, namely, Flair, T1, T2, and T1ce. Firstly, eight feature maps are extracted from each modality using the Zernike moments approach. The Zernike moments can create a feature map using two parameters, namely, n and m. So, by changing these values, we are able to generate different sets of edge feature maps. Then, eight edge feature maps for each modality are selected to produce a final feature map. Next, four original images are encoded into new four images to represent more unique and key information using the Local Directional Number Pattern (LDNP). As different encoded image leads to obtaining different final results and accuracies, the Enhanced Ant Lion Optimization (EALO) was employed to find the best possible set of feature maps for creating the best possible encoded image. Finally, a CNN model is utilized to explore significant details from the brain tissue more efficiently which accepts four input patches. Overall, the suggested framework outperforms the baseline methods regarding Dice score and Recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takrouni W, Douik A (2022) Improving geometric P-norm-based glioma segmentation through deep convolutional autoencoder encapsulation. Biomed Signal Process Control 71:103232. https://doi.org/10.1016/J.BSPC.2021.103232

    Article  Google Scholar 

  2. Hiratsuka T et al (2020) Hierarchical cluster and region of interest analyses based on mass spectrometry imaging of human brain tumours. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-62176-8

  3. Tang SL, Gao YL, Hu Z (2018) Retracted article: TRIM22 functions as an oncogene in gliomas through regulating the Wnt/β-catenin signaling pathway. RSC Adv 8(54):30894–30901. https://doi.org/10.1039/C8RA05684F

  4. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2020) UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856–1867. https://doi.org/10.1109/TMI.2019.2959609

    Article  Google Scholar 

  5. Chang J et al (2019) A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent 58:316–322. https://doi.org/10.1016/J.JVCIR.2018.11.047

    Article  Google Scholar 

  6. Singh R, Goel A, Raghuvanshi DK (2020) Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Vis Comput 37(8):2157–2171. https://doi.org/10.1007/S00371-020-01977-4

  7. Tataei Sarshar N et al (2023) Glioma brain tumor segmentation in Four MRI modalities using a convolutional neural network and based on a transfer learning method, pp 386–402. https://doi.org/10.1007/978-3-031-04435-9_39

  8. Ranjbarzadeh R, Bagherian Kasgari A, Jafarzadeh Ghoushchi S, Anari S, Naseri M, Bendechache M (2021) Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep 11(1):10930. https://doi.org/10.1038/s41598-021-90428-8

  9. Elmezain, M, Mahmoud A, Mosa DT, Said W (2022) Brain tumor segmentation using deep capsule network and latent-dynamic conditional random fields. J Imaging 8(7):190. https://doi.org/10.3390/JIMAGING8070190

  10. Yang HY, Yang J (2019) Automatic brain tumor segmentation with contour aware residual network and adversarial training. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol 11384, pp 267–278. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_24/COVER/

  11. Zhang D et al (2020) Exploring task structure for brain tumor segmentation from multi-modality MR images. IEEE Trans Image Process 29:2020. https://doi.org/10.1109/TIP.2020.3023609

    Article  Google Scholar 

  12. El Kader IA, Xu G, Shuai Z, Saminu S, Javaid I, Ahmad IS (2021) Differential deep convolutional neural network model for brain tumor classification. Brain Sci 11(3):352. https://doi.org/10.3390/BRAINSCI11030352

  13. Neelima G, Chigurukota DR, Maram B, Girirajan B (2022) Optimal DeepMRSeg based tumor segmentation with GAN for brain tumor classification. Biomed Signal Process Control 74:103537. https://doi.org/10.1016/J.BSPC.2022.103537

    Article  Google Scholar 

  14. 박진배*, Kumar T, 경희대학교배성호, Park J, Bae S-H (2020) Search of an optimal sound augmentation policy for environmental sound classification with deep neural networks. In: Proceedings of the Korean society of broadcast engineers conference, pp 18–21

    Google Scholar 

  15. Aiman A, Shen Y, Bendechache M, Inayat I, Kumar T (2021) AUDD: audio Urdu digits dataset for automatic audio Urdu digit recognition. Appl Sci 11(19):8842. https://doi.org/10.3390/APP11198842

  16. Kumar T, Turab M, Talpur S, Brennan R, Bendechache M (2022) Forged character detection datasets: passports, driving licences and visa stickers. Int J Artif Intell Appl (IJAIA) 13(2):21. https://doi.org/10.5121/IJAIA.2022.13202

  17. Khan W et al (2022) Introducing Urdu digits dataset with demonstration of an efficient and robust noisy decoder-based pseudo example generator. Symmetry 14(10):1976. https://doi.org/10.3390/SYM14101976

  18. Chakraborty A, Ganguly D, Caputo A, Jones GJF (2020) Kernel density estimation based factored relevance model for multi-contextual point-of-interest recommendation. Inf Retrieval J 25(1):44–90. https://doi.org/10.48550/arxiv.2006.15679

    Article  Google Scholar 

  19. Ali E, Caputo A, Lawless S, Conlan O (2021) Where Should I Go? A deep learning approach to personalize type-based facet ranking for POI suggestion. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol 13080, pp 207–215. Springer, Cham. https://doi.org/10.1007/978-3-030-90888-1_17

  20. Baseri Saadi S, Tataei Sarshar, N, Sadeghi S, Ranjbarzadeh R, Kooshki Forooshani M, Bendechache M (2022) Investigation of effectiveness of shuffled frog-leaping optimizer in training a convolution neural network. J Healthc Eng 2022:1–11. https://doi.org/10.1155/2022/4703682

  21. Ranjbarzadeh R et al (2022) Nerve optic segmentation in CT images using a deep learning model and a texture descriptor. Complex Intell Syst 2022:1–15. https://doi.org/10.1007/S40747-022-00694-W

    Article  Google Scholar 

  22. Anari S, Tataei Sarshar N, Mahjoori N, Dorosti S, Rezaie A (2022) Review of deep learning approaches for thyroid cancer diagnosis. Math Probl Eng 2022:1–8. https://doi.org/10.1155/2022/5052435

  23. Zhou C, Ding C, Wang X, Lu Z, Tao D (2020) One-pass multi-task networks with cross-task guided attention for brain tumor segmentation. IEEE Trans Image Process 29:4516–4529. https://doi.org/10.1109/TIP.2020.2973510

    Article  MATH  Google Scholar 

  24. Cui S, Mao L, Jiang J, Liu C, Xiong S (2018) Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J Healthc Eng 2018:1–14. https://doi.org/10.1155/2018/4940593

  25. Zhang W et al (2021) ME-Net: multi-encoder net framework for brain tumor segmentation. Int J Imaging Syst Technol. https://doi.org/10.1002/IMA.22571

    Article  Google Scholar 

  26. Kamnitsas K et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/J.MEDIA.2016.10.004

    Article  Google Scholar 

  27. Zhou X, Li X, Hu K, Zhang Y, Chen Z, Gao X (2021) ERV-Net: an efficient 3D residual neural network for brain tumor segmentation. Expert Syst Appl 170:114566. https://doi.org/10.1016/J.ESWA.2021.114566

    Article  Google Scholar 

  28. Mlynarski P, Delingette H, Criminisi A, Ayache N (2019) 3D convolutional neural networks for tumor segmentation using long-range 2D context. Comput Med Imaging Graph 73:60–72. https://doi.org/10.1016/J.COMPMEDIMAG.2019.02.001

    Article  Google Scholar 

  29. Do N-T, Jung S-T, Yang H-J, Kim S-H (2021) Multi-level Seg-Unet model with global and patch-based X-ray images for knee bone tumor detection. Diagnostics 11(4):691. https://doi.org/10.3390/diagnostics11040691

    Article  Google Scholar 

  30. Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol 10670, pp 178–190. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_16/COVER/

  31. Amian M, Soltaninejad M (2020) Multi-resolution 3D CNN for MRI brain tumor segmentation and survival prediction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol 11992, pp 221–230. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_21/COVER/

  32. Khairandish MO, Sharma M, Jain V, Chatterjee JM, Jhanjhi NZ (2021) A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. IRBM. https://doi.org/10.1016/J.IRBM.2021.06.003

    Article  Google Scholar 

  33. Ranjbarzadeh R et al (2022) MRFE-CNN: multi-route feature extraction model for breast tumor segmentation in Mammograms using a convolutional neural network. Ann Oper Res 2022:1–22. https://doi.org/10.1007/S10479-022-04755-8

    Article  Google Scholar 

  34. Kumar T, Park J, Ali MS, Shahab Uddin AFM, Ko JH, Bae S-H (2021) Binary-classifiers-enabled filters for semi-supervised learning. IEEE Access 9:167663. https://doi.org/10.1109/ACCESS.2021.3124200

  35. Xu Z, Sheykhahmad FR, Ghadimi N, Razmjooy N (2020) Computer-aided diagnosis of skin cancer based on soft computing techniques. https://doi.org/10.1515/med-2020-0131

  36. Dhiman C, Vishwakarma DK (2019) A robust framework for abnormal human action recognition using R-transform and Zernike moments in depth videos. IEEE Sens J 19(13):5195–5203. https://doi.org/10.1109/JSEN.2019.2903645

    Article  Google Scholar 

  37. Zhao Z, Kuang X, Zhu Y, Liang Y, Xuan Y (2021) Combined kernel for fast GPU computation of Zernike moments. J Real Time Image Process 18(3):431–444. https://doi.org/10.1007/S11554-020-00979-8/FIGURES/17

    Article  Google Scholar 

  38. Rezaee K, Rezaee A, Shaikhi N, Haddadnia J (2020) Multi-mass breast cancer classification based on hybrid descriptors and memetic meta-heuristic learning. SN Appl Sci 2(7):1–19. https://doi.org/10.1007/s42452-020-3103-7

    Article  Google Scholar 

  39. Leila C, Maâmar K, Salim C (2011) Combining neural networks for Arabic handwriting recognition. In: Proceedings of the 10th international symposium on programming and systems, ISPS 2011, pp 74–79. https://doi.org/10.1109/ISPS.2011.5898872

  40. Jac Fredo AR, Abilash RS, Femi R, Mythili A, Kumar CS (2019) Classification of damages in composite images using Zernike moments and support vector machines. Compos B Eng 168:77–86. https://doi.org/10.1016/J.COMPOSITESB.2018.12.064

  41. Tuncer T, Dogan S, Ozyurt F (2020) An automated residual exemplar local binary pattern and iterative ReliefF based corona detection method using lung X-ray image. Chemom Intell Lab Syst 203:104054. https://doi.org/10.1016/j.chemolab.2020.104054

    Article  Google Scholar 

  42. Ranjbarzadeh R, Baseri Saadi S (2020) Corrigendum to ‘automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering’ (Measurement 150:107086). Measurement 151:107230. https://doi.org/10.1016/J.MEASUREMENT.2019.107230

  43. Ranjbarzadeh R, Saadi SB, Amirabadi A (2020) LNPSS: SAR image despeckling based on local and non-local features using patch shape selection and edges linking. Measurement (Lond) 164:107989. https://doi.org/10.1016/j.measurement.2020.107989

  44. Leng C, Zhang H, Li B, Cai G, Pei Z, He L (2019) Local feature descriptor for image matching: a survey. IEEE Access 7:6424–6434. https://doi.org/10.1109/ACCESS.2018.2888856

    Article  Google Scholar 

  45. Naiemi F, Ghods V, Khalesi H (2021) A novel pipeline framework for multi oriented scene text image detection and recognition. Expert Syst Appl 170:114549. https://doi.org/10.1016/j.eswa.2020.114549

    Article  Google Scholar 

  46. Sharif M, Amin J, Raza M, Yasmin M, Satapathy SC (2020) An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognit Lett 129:150–157. https://doi.org/10.1016/J.PATREC.2019.11.017

    Article  Google Scholar 

  47. Jeena RS, Sukesh Kumar A, Mahadevan K (2019) A novel method for stroke prediction from retinal images using HoG approach. Commun Comput Inf Sci 968:137–146. https://doi.org/10.1007/978-981-13-5758-9_12

  48. El Khadiri I et al (2021) Petersen graph multi-orientation based multi-scale ternary pattern (PGMO-MSTP): an efficient descriptor for texture and material recognition. IEEE Trans Image Process 30:4571–4586. https://doi.org/10.1109/TIP.2021.3070188

    Article  Google Scholar 

  49. Liu L, Lao S, Fieguth PW, Guo Y, Wang X, Pietikäinen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381. https://doi.org/10.1109/TIP.2016.2522378

    Article  MathSciNet  MATH  Google Scholar 

  50. Ranjbarzadeh R et al (2021) Lung infection segmentation for COVID-19 pneumonia based on a cascade convolutional network from CT images. Biomed Res Int 2021:1–16. https://doi.org/10.1155/2021/5544742

    Article  Google Scholar 

  51. Uddin MZ, Hassan MM, Almogren A, Zuair M, Fortino G, Torresen J (2017) A facial expression recognition system using robust face features from depth videos and deep learning. Comput Electr Eng 63:114–125. https://doi.org/10.1016/j.compeleceng.2017.04.019

    Article  Google Scholar 

  52. Luo YT et al (2016) Local line directional pattern for palmprint recognition. Pattern Recognit 50:26–44. https://doi.org/10.1016/j.patcog.2015.08.025

    Article  Google Scholar 

  53. Razmjooy N, Razmjooy S (2021) Skin melanoma segmentation using neural networks optimized by quantum invasive weed optimization algorithm.Lecture Notes in Electrical Engineering, vol 696, pp 233–250. Springer, Cham. https://doi.org/10.1007/978-3-030-56689-0_12

  54. Fan X, Sun H, Yuan Z, Li Z, Shi R, Razmjooy N (2020) Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system. Energy Rep 6:325–335. https://doi.org/10.1016/j.egyr.2020.01.009

    Article  Google Scholar 

  55. Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Elaziz MA (2021) Ant lion optimizer: a comprehensive survey of its variants and applications. Arch. Comput Methods Eng 28(3):1397–1416. https://doi.org/10.1007/S11831-020-09420-6/TABLES/3

    Article  MathSciNet  Google Scholar 

  56. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/J.ADVENGSOFT.2015.01.010

    Article  Google Scholar 

  57. Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Elaziz MA (2020) Ant lion optimizer: a comprehensive survey of its variants and applications. Arch Comput Methods Eng 28(3):1397–1416 https://doi.org/10.1007/S11831-020-09420-6

  58. Subhashini KR, Satapathy JK (2017) Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis. Appl Soft Comput 59:153–173. https://doi.org/10.1016/J.ASOC.2017.05.007

    Article  Google Scholar 

  59. Wang G, Li W, Ourselin S, Vercauteren T (2019) Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front Comput Neurosci 13:56. https://doi.org/10.3389/FNCOM.2019.00056/BIBTEX

    Article  Google Scholar 

  60. Hu S et al (2020) Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access 8:118869–118883. https://doi.org/10.1109/ACCESS.2020.3005510

    Article  Google Scholar 

  61. Wang X et al (2020) A weakly-supervised framework for COVID-19 classification and lesion localization from Chest CT. IEEE Trans Med Imaging 39(8):2615–2625. https://doi.org/10.1109/tmi.2020.2995965

    Article  Google Scholar 

  62. Fan DP et al (2020) Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging 39(8):2626–2637. https://doi.org/10.1109/TMI.2020.2996645

    Article  Google Scholar 

  63. Ranjbarzadeh R et al (2022) A deep learning approach for robust, multi-oriented, and curved text detection. Cogn Comput 1:1–13. https://doi.org/10.1007/S12559-022-10072-W

  64. Mahmood A et al (2017) Deep learning for coral classification. In: Handbook of neural computation, pp. 383–401. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811318-9.00021-1

  65. Bengio Y (2012) Practical Recommendations for Gradient-Based Training of Deep Architectures, pp. 437–478. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_26

  66. Torres AD, Yan H, Aboutalebi AH, Das A, Duan L, Rad P (2018) Patient facial emotion recognition and sentiment analysis using secure cloud with hardware acceleration. In: Computational intelligence for multimedia big data on the cloud with engineering applications. Elsevier, pp 61–89. https://doi.org/10.1016/B978-0-12-813314-9.00003-7

  67. Dolz J, Desrosiers C, Ben Ayed I (2018) 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. Neuroimage 170:456–470. https://doi.org/10.1016/j.neuroimage.2017.04.039

  68. Calik N, Belen MA, Mahouti P (2020) Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna. Int J Numer Model Electron Networks Devices Fields 33(2). https://doi.org/10.1002/jnm.2682

  69. Dureja A, Pahwa P (2018) Analysis of non-linear activation functions for classification tasks using convolutional neural networks. Recent Patents Comput Sci 12(3):156–161. https://doi.org/10.2174/2213275911666181025143029

    Article  Google Scholar 

  70. Bakas S (2017) Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The cancer imaging archive, vol 286. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  71. Bakas S et al (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4(1):1–13. https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  72. Valizadeh A, Jafarzadeh Ghoushchi S, Ranjbarzadeh R, Pourasad Y (2021) Presentation of a segmentation method for a diabetic retinopathy patient’s fundus region detection using a convolutional neural network. Comput Intell Neurosci 2021:1–14. https://doi.org/10.1155/2021/7714351

  73. Ranjbarzadeh R, Caputo A, Tirkolaee EB, Jafarzadeh Ghoushchi, S, Bendechache M (2023) Brain tumor segmentation of MRI images: a comprehensive review on the application of artificial intelligence tools. Comput Biol Med 152:106405. https://doi.org/10.1016/J.COMPBIOMED.2022.106405

  74. Hu J, Gu X, Gu X (2022) Mutual ensemble learning for brain tumor segmentation. Neurocomputing 504:68–81. https://doi.org/10.1016/J.NEUCOM.2022.06.058

    Article  Google Scholar 

  75. Aboelenein NM, Songhao P, Koubaa A, Noor A, Afifi A (2020) HTTU-Net: hybrid two track U-Net for automatic brain tumor segmentation. IEEE Access 8:101406–101415. https://doi.org/10.1109/ACCESS.2020.2998601

    Article  Google Scholar 

  76. Chen W, Liu B, Peng S, Sun J, Qiao X (2019) S3D-UNET: separable 3D U-Net for brain tumor segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol 11384, pp 358–368. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_32/COVER/

  77. Zhang J, Jiang Z, Dong J, Hou Y, Liu B (2020) Attention gate ResU-Net for automatic MRI brain tumor segmentation. IEEE Access 8:58533–58545. https://doi.org/10.1109/ACCESS.2020.2983075

    Article  Google Scholar 

  78. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization, pp 618–626

    Google Scholar 

Download references

Acknowledgement

This publication has emanated from research [conducted with the financial support of/supported in part by a grant from Science Foundation Ireland under Grant number No. 18/CRT/6183 and is supported by the ADAPT Centre for Digital Content Technology which is funded under the SFI Research Centres Programme (Grant 13/RC/2106/_P2), Lero SFI Centre for Software (Grant 13/RC/2094/_P2) and is co-funded under the European Regional Development Fund. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Ranjbarzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagherian Kasgari, A., Ranjbarzadeh, R., Caputo, A., Baseri Saadi, S., Bendechache, M. (2023). Brain Tumor Segmentation Based on Zernike Moments, Enhanced Ant Lion Optimization, and Convolutional Neural Network in MRI Images. In: Razmjooy, N., Ghadimi, N., Rajinikanth, V. (eds) Metaheuristics and Optimization in Computer and Electrical Engineering. Lecture Notes in Electrical Engineering, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-42685-8_10

Download citation

Publish with us

Policies and ethics