Skip to main content

Exploring the Potential of Immersive Virtual Environments for Learning American Sign Language

  • Conference paper
  • First Online:
Responsive and Sustainable Educational Futures (EC-TEL 2023)

Abstract

Sign languages enable effective communication between deaf and hearing people. Despite years of extensive pedagogical research, learning sign language online comes with a number of difficulties that might be frustrating for some students. Indeed, most of the existing approaches rely heavily on learning resources uploaded on websites, assuming that users will frequently consult them; however, this approach may feel tedious and uninspiring. To address this issue, several researchers have started looking into learning sign language in a game-based environment. However, the majority of the existing work still relies on website-based designs, with only a very few proposed systems providing an immersive virtual environment, and there are no user studies comparing website-based and immersive virtual environments. In this paper, we present an immersive environment for learning numbers 0–9 in American Sign Language (ASL). Our hypothesis is that an immersive virtual environment can provide users with a better learning experience and that users will show a higher level of engagement compared to website-based learning. We conducted a questionnaire-based user survey, and our initial findings suggest that users prefer to learn in an immersive virtual environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.who.int/zh/news-room/fact-sheets/detail/deafness-and-hearing-loss.

  2. 2.

    https://quizlet.com/560702085/asl-numbers-0-9-flash-cards/.

References

  1. Adamo-Villani, N., Carpenter, E., Arns, L.: An immersive virtual environment for learning sign language mathematics. In: ACM SIGGRAPH 2006 Educators Program, pp. 20-es (2006)

    Google Scholar 

  2. Bantupalli, K., Xie, Y.: American sign language recognition using deep learning and computer vision. In: Proceedings of ICBD, pp. 4896–4899. IEEE (2018)

    Google Scholar 

  3. Battistoni, P., Di Gregorio, M., Sebillo, M., Vitiello, G.: Ai at the edge for sign language learning support. In: Proceedings of HCC, pp. 16–23. IEEE (2019)

    Google Scholar 

  4. Bheda, V., Radpour, D.: Using deep convolutional networks for gesture recognition in American sign language. arXiv:1710.06836 (2017)

  5. Bird, J.J., Ekárt, A., Faria, D.R.: British sign language recognition via late fusion of computer vision and leap motion with transfer learning to American sign language. Sensors 20(18), 5151 (2020)

    Article  Google Scholar 

  6. Bradski, G., Kaehler, A.: Opencv. Dr. Dobb’s J. Softw. Tools 3, 120 (2000)

    Google Scholar 

  7. Bragg, D., Caselli, N., Gallagher, J.W., Goldberg, M., Oka, C.J., Thies, W.: ASL sea battle: gamifying sign language data collection. In: Proceedings of CHI-HFCS, pp. 1–13 (2021)

    Google Scholar 

  8. Camgoz, N.C., Koller, O., Hadfield, S., Bowden, R.: Sign language transformers: joint end-to-end sign language recognition and translation. In: Proceedings of CVPR, pp. 10023–10033 (2020)

    Google Scholar 

  9. Economou, D., Russi, M.G., Doumanis, I., Mentzelopoulos, M., Bouki, V., Ferguson, J.: Using serious games for learning british sign language combining video, enhanced interactivity, and VR technology. J. Univ. Comput. Sci. 26(8), 996–1016 (2020)

    Google Scholar 

  10. Empe, N.A.A., Echon, R.C.L., Vega, H.D.A., Paterno, P.L.C., Jamis, M.N., Yabut, E.R.: SimboWika: a mobile and web application to learn filipino sign language for deaf students in elementary schools. In: Proceedings of R10-HTC, pp. 1–6. IEEE (2020)

    Google Scholar 

  11. Estrada-Cota, I., Carreño-León, M.A., Sandoval-Bringas, J.A., Leyva-Carrillo, A.A., Quiroz, H.X.C.: Design of a Web tool for teaching-learning of states and capitals of México through the Mexican sign language. In: Proceedings of ICITE, pp. 174–179. IEEE (2021)

    Google Scholar 

  12. Goswami, T., Javaji, S.R.: CNN model for American sign language recognition. In: Kumar, A., Mozar, S. (eds.) ICCCE 2020. LNEE, vol. 698, pp. 55–61. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7961-5_6

    Chapter  Google Scholar 

  13. Jiang, X., Hu, B., Chandra Satapathy, S., Wang, S.H., Zhang, Y.D.: Fingerspelling identification for Chinese sign language via alexnet-based transfer learning and adam optimizer. Scientific Programming 2020 (2020)

    Google Scholar 

  14. John, A., Krishnan, R.H., Vinitha, A.M.: Language Recognition System: An Application Based Study with Special Reference to Sociolinguistics and Computational Linguistics (2021)

    Google Scholar 

  15. Joy, J., Balakrishnan, K., Sreeraj, M.: Signquiz: a quiz based tool for learning finger spelled signs in Indian sign language using ASLR. IEEE Access 7, 28363–28371 (2019)

    Article  Google Scholar 

  16. Kim, S., Ji, Y., Lee, K.B.: An effective sign language learning with object detection based ROI segmentation. In: Proceedings of IRC, pp. 330–333. IEEE (2018)

    Google Scholar 

  17. Kumar, S.S., Wangyal, T., Saboo, V., Srinath, R.: Time series neural networks for real time sign language translation. In: Proceedings of ICMLA, pp. 243–248. IEEE (2018)

    Google Scholar 

  18. Pallavi, P., Sarvamangala, D.: Recognition of sign language using deep neural network. Int. J. Adv. Res. Comput. Sci. 12, 92–97 (2021)

    Google Scholar 

  19. Park, J.H., Choi, H.J.: Factors influencing adult learners’ decision to drop out or persist in online learning. J. Educ. Technol. Soc. 12(4), 207–217 (2009)

    Google Scholar 

  20. Patricks, A.: Developing an accessible learning application for sign language (c) (2022)

    Google Scholar 

  21. Phan, H.D., Ellis, K., Dorin, A., Olivier, P.: Feedback strategies for embodied agents to enhance sign language vocabulary learning. In: ACM-IVA, pp. 1–8 (2020)

    Google Scholar 

  22. Reisoğlu, I., Topu, B., Yılmaz, R., Karakuş Yılmaz, T., Göktaş, Y.: 3d virtual learning environments in education: a meta-review. Asia Pac. Educ. Rev. 18, 81–100 (2017)

    Article  Google Scholar 

  23. Samonte, M.J.C.: An assistive technology using fsl, speech recognition, gamification and online handwritten character recognition in learning statistics for students with hearing and speech impairment. In: Proceedings of ICFET, pp. 92–97 (2020)

    Google Scholar 

  24. Schioppo, J., Meyer, Z., Fabiano, D., Canavan, S.: Sign language recognition: Learning American sign language in a virtual environment. In: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, pp. 1–6 (2019)

    Google Scholar 

  25. Schnepp, J., Wolfe, R., Brionez, G., Baowidan, S., Johnson, R., McDonald, J.: Human-centered design for a sign language learning application. In: Proceedings of PETRAE, pp. 1–5 (2020)

    Google Scholar 

  26. Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the User Experience Questionnaire (UEQ) in different evaluation scenarios. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 383–392. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07668-3_37

    Chapter  Google Scholar 

  27. Schrepp, M., Thomaschewski, J., Hinderks, A.: Construction of a benchmark for the user experience questionnaire (UEQ). Int. J. Interact. Multimed. Artif. Intell. 4(4), 40–44 (2017)

    Google Scholar 

  28. Vaitkevičius, A., Taroza, M., Blažauskas, T., Damaševičius, R., Maskeliūnas, R., Woźniak, M.: Recognition of American sign language gestures in a virtual reality using leap motion. Appl. Sci. 9(3), 445 (2019)

    Article  Google Scholar 

  29. Wang, J., Ivrissimtzis, I., Li, Z., Zhou, Y., Shi, L.: Developing and evaluating a novel gamified virtual learning environment for ASL. In: INTERACT 2023. LNCS. Springer (2023)

    Google Scholar 

  30. Wang, J., Ivrissimtzis, I., Li, Z., Zhou, Y., Shi, L.: User-defined hand gesture interface to improve user experience of learning American sign language. In: International Conference on Intelligent Tutoring Systems, pp. 479–490. Springer (2023)

    Google Scholar 

  31. Zhang, F., et al.: Mediapipe hands: on-device real-time hand tracking. arXiv:2006.10214 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Ivrissimtzis, I., Li, Z., Zhou, Y., Shi, L. (2023). Exploring the Potential of Immersive Virtual Environments for Learning American Sign Language. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds) Responsive and Sustainable Educational Futures. EC-TEL 2023. Lecture Notes in Computer Science, vol 14200. Springer, Cham. https://doi.org/10.1007/978-3-031-42682-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42682-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42681-0

  • Online ISBN: 978-3-031-42682-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics