Skip to main content

Automata with Timers

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2023)

Abstract

In this work, we study properties of deterministic finite-state automata with timers, a subclass of timed automata proposed by Vaandrager et al. as a candidate for an efficiently learnable timed model. We first study the complexity of the configuration reachability problem for such automata and establish that it is \(\textsf{PSPACE}\)-complete. Then, as simultaneous timeouts (we call these, races) can occur in timed runs of such automata, we study the problem of determining whether it is possible to modify the delays between the actions in a run, in a way to avoid such races. The absence of races is important for modelling purposes and to streamline learning of automata with timers. We provide an effective characterization of when an automaton is race-avoiding and establish that the related decision problem is in \(\textsf{3EXP}\) and \(\textsf{PSPACE}\)-hard.

This work was supported by the Belgian FWO “SAILor” project (G030020N). Gaëtan Staquet is a research fellow (Aspirant) of the Belgian F.R.S.-FNRS. The research of Frits Vaandrager was supported by NWO TOP project 612.001.852 “Grey-box learning of Interfaces for Refactoring Legacy Software (GIRLS)”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notation \({\textsf {dom}}(f)\) means the domain of the partial function f.

  2. 2.

    The reason for this choice will be clarified at the end of this section.

  3. 3.

    When using the action indices in the blocks, we have \(B_1 = (1 ~3, \bot )\) and \(B_2 = (2 ~ 4, \bot )\).

  4. 4.

    Recall that the sequence of a block can be composed of a single action.

References

  1. Aceto, L., Laroussinie, F.: Is your model checker on time? On the complexity of model checking for timed modal logics. J. Log. Algebraic Meth. Program. 52–53, 7–51 (2002). https://doi.org/10.1016/S1567-8326(02)00022-X

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_1

    Chapter  Google Scholar 

  3. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_3

    Chapter  Google Scholar 

  4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  5. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning One-Clock Timed Automata. In: TACAS 2020, Part I. LNCS, vol. 12078, pp. 444–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_25

    Chapter  Google Scholar 

  6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)

    Google Scholar 

  8. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Ouaknine, J., Worrell, J.: Model checking real-time systems. In: Handbook of Model Checking, pp. 1001–1046. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_29

    Chapter  MATH  Google Scholar 

  9. Bruyère, V., Pérez, G.A., Staquet, G., Vaandrager, F.W.: Automata with timers. CoRR abs/2305.07451 (2023). https://doi.org/10.48550/arXiv.2305.07451

  10. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8

  11. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-8_17

    Chapter  Google Scholar 

  12. Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games: A Guide to Current Research, vol. 2500. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36387-4

  13. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. Theor. Comput. Sci. 411(47), 4029–4054 (2010). https://doi.org/10.1016/j.tcs.2010.07.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_29

    Chapter  Google Scholar 

  15. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96562-8_5

    Chapter  Google Scholar 

  16. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7

    Chapter  Google Scholar 

  17. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimulations. Formal Meth. Syst. Des. 18(1), 25–68 (2001). https://doi.org/10.1023/A:1008734703554

    Article  MATH  Google Scholar 

  18. Vaandrager, F., Ebrahimi, M., Bloem, R.: Learning Mealy machines with one timer. Inf. Comput., 105013 (2023). https://doi.org/10.1016/j.ic.2023.105013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Staquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruyère, V., Pérez, G.A., Staquet, G., Vaandrager, F.W. (2023). Automata with Timers. In: Petrucci, L., Sproston, J. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2023. Lecture Notes in Computer Science, vol 14138. Springer, Cham. https://doi.org/10.1007/978-3-031-42626-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42626-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42625-4

  • Online ISBN: 978-3-031-42626-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics