Skip to main content

Optimisation of Matrix Production System Reconfiguration with Reinforcement Learning

  • Conference paper
  • First Online:
KI 2023: Advances in Artificial Intelligence (KI 2023)

Abstract

Matrix production systems (MPSs) offer significant advantages in flexibility and scalability when compared to conventional line-based production systems. However, they also pose major challenges when it comes to finding optimal decision policies for production planning and control, which is crucial to ensure that flexibility does not come at the cost of productivity. While standard planning methods such as decision rules or metaheuristics suffer from low solution quality and long computation times as problem complexity increases, search methods such as Monte Carlo Tree Search (MCTS) with Reinforcement Learning (RL) have proven powerful in optimising otherwise inhibitively complex problems. Despite its success, open questions remain as to when RL can be beneficial for industrial-scale problems. In this paper, we consider the application of MCTS with RL for optimising the reconfiguration of an MPS. We define two operational scenarios and evaluate the potential of RL in each. Taken more generally, our results provide context to better understand when RL can be beneficial in industrial-scale use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bortolini, M., Galizia, F.G., Mora, C.: Reconfigurable manufacturing systems: literature review and research trend. J. Manuf. Syst. 49, 93–106 (2018)

    Article  Google Scholar 

  2. Greschke, P., Schönemann, M., Thiede, S., Herrmann, C.: Matrix structures for high volumes and flexibility in production systems. Procedia CIRP 17, 160–165 (2014)

    Article  Google Scholar 

  3. Bortolini, M., Galizia, F.G., Mora, C., Pilati, F.: Reconfigurability in cellular manufacturing systems: a design model and multi-scenario analysis. Int. J. Adv. Manuf. Technol. 104(9), 4387–4397 (2019)

    Article  Google Scholar 

  4. Perwitz, J., Sobottka, T., Beicher, J.N., Gaal, A.: Simulation-based evaluation of performance benefits from flexibility in assembly systems and matrix production. Procedia CIRP 107, 693–698 (2022)

    Article  Google Scholar 

  5. Joseph, O.A., Sridharan, R.: Effects of routing flexibility, sequencing flexibility and scheduling decision rules on the performance of a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 56(1), 291–306 (2011)

    Article  Google Scholar 

  6. Zhu, Q., Huang, S., Wang, G., Moghaddam, S.K., Lu, Y., Yan, Y.: Dynamic reconfiguration optimization of intelligent manufacturing system with human-robot collaboration based on digital twin. J. Manuf. Syst. 65, 330–338 (2022)

    Article  Google Scholar 

  7. Luo, K., Shen, G., Li, L., Sun, J.: 0–1 mathematical programming models for flexible process planning. Eur. J. Oper. Res. 308(3), 1160–1175 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rodrigues, N., Oliveira, E., Leitão, P.: Decentralized and on-the-fly agent-based service reconfiguration in manufacturing systems. Comput. Ind. 101, 81–90 (2018)

    Article  Google Scholar 

  9. Mo, F., et al.: A framework for manufacturing system reconfiguration and optimisation utilising digital twins and modular artificial intelligence. Robot. Comput.-Integr. Manuf. 82, 102524 (2023)

    Article  Google Scholar 

  10. Morariu, C., Morariu, O., Răileanu, S., Borangiu, T.: Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput. Ind. 120, 103244 (2020)

    Article  Google Scholar 

  11. Scrimieri, D., Adalat, O., Afazov, S., Ratchev, S.: Modular reconfiguration of flexible production systems using machine learning and performance estimates. IFAC-PapersOnLine 55(10), 353–358 (2022)

    Article  Google Scholar 

  12. Yang, S., Xu, Z.: Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing. Int. J. Prod. Res. 60(16), 4936–4953 (2022)

    Article  Google Scholar 

  13. Monka, P.P., Monkova, K., Jahnátek, A., Vanca, J.: Flexible manufacturing system simulation and optimization. In: Mitrovic, N., Mladenovic, G., Mitrovic, A. (eds.) CNNTech 2020. LNNS, vol. 153, pp. 53–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58362-0_4

    Chapter  Google Scholar 

  14. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  15. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fawzi, A., et al.: Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610(7930), 47–53 (2022)

    Google Scholar 

  17. Halbwidl, C., Sobottka, T., Gaal, A., Sihn, W.: Deep reinforcement learning as an optimization method for the configuration of adaptable, cell-oriented assembly systems. Procedia CIRP 104, 1221–1226 (2021)

    Article  Google Scholar 

  18. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  19. Göppert, A., Mohring, L., Schmitt, R.H.: Predicting performance indicators with ANNs for AI-based online scheduling in dynamically interconnected assembly systems. Prod. Eng. Res. Devel. 15(5), 619–633 (2021)

    Article  Google Scholar 

  20. Cobbe, K., Klimov, O., Hesse, C., Kim, T., Schulman, J.: Quantifying Generalization in Reinforcement Learning, July 2019

    Google Scholar 

  21. Kirk, R., Zhang, A., Grefenstette, E., Rocktäschel, T.: A survey of zero-shot generalisation in deep reinforcement learning. J. Artif. Intell. Res. 76, 201–264 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the German Federal Ministry for Economic Affairs and Climate Action (BMWK) and the Fraunhofer-Gesellschaft through the projects REINFORCE (887500), champI4.0ns (891793) and MES.Trix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Czarnetzki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czarnetzki, L., Laflamme, C., Halbwidl, C., Günther, L.C., Sobottka, T., Bachlechner, D. (2023). Optimisation of Matrix Production System Reconfiguration with Reinforcement Learning. In: Seipel, D., Steen, A. (eds) KI 2023: Advances in Artificial Intelligence. KI 2023. Lecture Notes in Computer Science(), vol 14236. Springer, Cham. https://doi.org/10.1007/978-3-031-42608-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42608-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42607-0

  • Online ISBN: 978-3-031-42608-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics