Skip to main content

Associative Reasoning for Commonsense Knowledge

  • Conference paper
  • First Online:
KI 2023: Advances in Artificial Intelligence (KI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14236))

Included in the following conference series:

  • 627 Accesses

Abstract

Associative reasoning refers to the human ability to focus on knowledge that is relevant to a particular problem. In this process, the meaning of symbol names plays an important role: when humans focus on relevant knowledge about the symbol ice, similar symbols like snow also come into focus. In this paper, we model this associative reasoning by introducing a selection strategy that extracts relevant parts from large commonsense knowledge sources. This selection strategy is based on word similarities from word embeddings and is therefore able to take the meaning of symbol names into account. We demonstrate the usefulness of this selection strategy with a case study from creativity testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Álvez, J., Lucio, P., Rigau, G.: Adimen-SUMO: reengineering an ontology for first-order reasoning. Int. J. Semant. Web Inf. Syst. 8, 80–116 (2012)

    Article  Google Scholar 

  2. Basile, V., Cabrio, E., Schon, C.: KNEWS: using logical and lexical semantics to extract knowledge from natural language. In: Proceedings of the European Conference on Artificial Intelligence (ECAI) 2016 Conference (2016)

    Google Scholar 

  3. Blaine, R., Worthen, P.M.C.: Toward an improved measure of remote associational ability. J. Educ. Measure. 8(2), 113–123 (1971)

    Article  Google Scholar 

  4. Furbach, U., Krämer, T., Schon, C.: Names are not just sound and smoke: word embeddings for axiom selection. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 250–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_15

    Chapter  Google Scholar 

  5. Hees, J.: Simulating Human Associations with Linked Data. Ph.D. thesis, Kaiserslautern University of Technology, Germany (2018). https://kluedo.ub.rptu.de/frontdoor/index/index/docId/5430

  6. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23

    Chapter  Google Scholar 

  7. Kahneman, D.: Thinking, Fast and Slow. Macmillan, London (2011)

    Google Scholar 

  8. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  9. Liu, Q., Wu, Z., Wang, Z., Sutcliffe, G.: Evaluation of axiom selection techniques. In: PAAR+SC\({^2}\)@IJCAR. CEUR Workshop Proceedings, vol. 2752, pp. 63–75. CEUR-WS.org (2020)

    Google Scholar 

  10. Liu, Q., Xu, Y.: Axiom selection over large theory based on new first-order formula metrics. Appl. Intell. 52(2), 1793–1807 (2022). https://doi.org/10.1007/s10489-021-02469-1

    Article  Google Scholar 

  11. Maslan, N., Roemmele, M., Gordon, A.S.: One hundred challenge problems for logical formalizations of commonsense psychology. In: Twelfth International Symposium on Logical Formalizations of Commonsense Reasoning, Stanford, CA (2015)

    Google Scholar 

  12. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Appl. Logic 7(1), 41–57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781

  14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  15. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991). http://eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ431389

  16. Olteteanu, A., Schöttner, M., Schuberth, S.: Computationally resurrecting the functional remote associates test using cognitive word associates and principles from a computational solver. Knowl. Based Syst. 168, 1–9 (2019). https://doi.org/10.1016/j.knosys.2018.12.023

    Article  Google Scholar 

  17. Roederer, A., Puzis, Y., Sutcliffe, G.: Divvy: an ATP meta-system based on axiom relevance ordering. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 157–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_13

    Chapter  Google Scholar 

  18. de Rooij, S., Beek, W., Bloem, P., van Harmelen, F., Schlobach, S.: Are names meaningful? Quantifying social meaning on the semantic web. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 184–199. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_12

    Chapter  Google Scholar 

  19. Schon, C., Siebert, S., Stolzenburg, F.: Using conceptnet to teach common sense to an automated theorem prover. In: ARCADE@CADE. EPTCS, vol. 311, pp. 19–24 (2019)

    Google Scholar 

  20. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: AAAI, pp. 4444–4451. AAAI Press (2017)

    Google Scholar 

  21. Hasan, O., Tahar, S.: Formalization of continuous probability distributions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Schon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schon, C. (2023). Associative Reasoning for Commonsense Knowledge. In: Seipel, D., Steen, A. (eds) KI 2023: Advances in Artificial Intelligence. KI 2023. Lecture Notes in Computer Science(), vol 14236. Springer, Cham. https://doi.org/10.1007/978-3-031-42608-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42608-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42607-0

  • Online ISBN: 978-3-031-42608-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics