Skip to main content

Part of the book series: Innovative Renewable Energy ((INREE))

  • 97 Accesses

Abstract

In Brazil, hydroelectricity has been the major and lowest-cost electricity source and currently accounts for ~62% of the electric-power market. With wind supplying an additional 12.5%, Brazil has been cited as an example for renewable-electricity production. However, the emerging concerns for the environmental and social impacts of hydro have led to policies that limit hydroelectric expansions. Additionally, growing periods of drought are restricting existing generation capacities and services. This has led to higher electricity prices and increased investments in new, clean energy sources. Photovoltaics (PV) has emerged as a primary candidate to meet the economic, reliability, and versatility requirements. Solar electricity is well-matched to Brazil’s excellent solar resource with the annual average global horizontal irradiation (GHI) that varies between 4.2 and 6.2 kWh/m2, with the highest solar irradiances in the northeast regions. This chapter highlights the evolution and recent growth of PV installations in Brazil. This is associated with policy and regulations, local meteorological and climate conditions, and economic and social considerations. In particular, the effects of government strategies are discussed and evaluated for the impact on PV in buildings. PV’s growing use and applications in the building sector are highlighted. The status, relative benefits, and trends of building-applied and building-integrated PV (BAPV and BIPV) are evaluated. Some examples of current BAPV and BIPV are presented. Features of building design and requirements are analyzed for single-family dwellings through commercial tower structures for the diverse Brazil climate conditions. Special needs and issues for the working-class neighborhoods are discussed along with the prospects for PV in these areas. The potential and future for PV in the Brazil built-environment markets are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All reference websites were accessed 12/20/2022.

References

All reference websites were accessed 12/20/2022.

  1. ANEEL, Sistema de Informações da Generação da ANEEL (SIGA). https://dadosabertos.aneel.gov.br

  2. Empresa de Pesquisa Energética [EPE] (2022). Balanço energético nacional. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-ben

  3. International Energy Agency [IEA] (2022). Renewables 2022, December 2022. https://www.iea.org/reports/renewables-2022

  4. REN21 (2022). REN21 Renewables 2022 Global Status Report. (Paris, France: REN21 Secretariat). (ISBN 978-3-948393-04-5). https://www.ren21.net/wp

  5. Government of Brazil (2022). Website posting: Solar energy becomes the third largest source in Brazil. https://www.gov.br/en/government-of-brazil/latest-news/solar-energy-becomes-the-third-largest-source-in-brazil; Also see, ABSOLR (2022). Exclusive statistics and analysis of the solar PV markets. https://www.absolar.org.br/market

  6. Ernst and Young (2022). Renewable Energy Country Attractiveness Index (RECAI). https://www.ey.com/en_it/recai

  7. Empresa de Pesquisa Energética [(EPE)] (2022), Painel de dados de micro e minigeração dstribuída http://shinyepe.brazilsouth.cloudapp.azure.com:3838/pdgd/ (accessed Aug. 22, 2022)

  8. Costa, E, Rodrigues Teixeira, AC. Silva Costa, SC & Consoni. FL (2022). Influence9of public policies on the diffusion of wind and solar PV sources in Brazil and the possible effects of COVID-19,” Renew. Sustain. Energy Rev., vol. 162, no. April, p. 112449, 2022, DOI: https://doi.org/10.1016/j.rser.2022.112449

  9. Breyer, C, Bogdanov, D, Khalili, S, & Keiner D (2021). Solar photovoltaics in 100% Renewable Energy System. Encyclopedia of Sustainability Science and Technology (Springer Scince+Business Media, LLC). https://doi.org/10.1007/978-1-4939-2493-6_1071-1

  10. Renne. D (2022). Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables. Solar Compass 1, 100007. https://doi.org/10.1016/j.solcom.2022.100007

  11. Mints, P (2022). PV Market Report The Solar Flare, Issue 1, SF-12022, SPV Market Research, May 2, 2022. See also, SPV Market Research (2022), Photovoltaics Manufacturer Capacity, Shipments, & Revenues 2021/2022, SPV-Suppl 10, April 2022, https://www.spvmarketresearch.com/services.html

  12. Cunha, APMdA, et al. Brazilian experience on the development of drought monitoring and impact assessment systems. In, 2019 edition of the Global Assessment Report on Disaster Risk Reduction (GAR 2019). https://www.undrr.org/publication/brazilian-experience-development-drought-monitoring-and-impact-assessment-systems

  13. HydroReview (2022). Low rainfall puts Brazilian power prices under pressure. https://www.hydroreview.com/business-finance/low-rainfall-puts-brazilian-power-prices-under-pressure/#gref

  14. Muggah, R, Folly, M, & Nogueira, MBB (2017). Tempering the human cost of building Brazil’s dams. Devex: Global Views, 19 June 2017. https://www.devex.com/news/opinion-tempering-the-human-cost-of-building-brazil-s-dams-90566

  15. Brazil Government (2004). Law No 10,848/2004 2004, Brasilia. http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.848.htm

  16. Hochberg, M, & Poudineh, R (2021). The Brazilian electricity market architecture: An analysis of instruments and misalignments, Utilities Policy 72, 101267. https://doi.org/10.1016/j.jup.2021.101267

    Article  Google Scholar 

  17. Fraundorfer, M & Rabitz. F (2020). The Brazilian renewable energy policy framework: instrument design and coherence. Clim Pol, 20, 652–660. https://doi.org/10.1080/14693062.2020.1754157(2x)

  18. Energias do Brasil (EDP) (2022). Energy Efficiency Projects in Brazil. https://www.edp.com/en/edp-stories/energy-efficiency-projects-in-brazil

  19. Agencia Nacional de Energia Eletrica (ANEEL) (2000). Law No. 9,991. http://www.planalto.gov.br/ccivil_03/leis/l9991.htm

  20. Agencia Nacional de Energia Eletrica (ANEEL) (2016) Law No 13,280. https://climate-laws.org/geographies/brazil/laws/laws-no-9-991-and-13-280-on-energy-efficiency-in-the-electricity-sector-and-on-national-program-for-energy-conservation-funds

  21. Ministry of Mines and Energy (MME) (2003). Programa Luz para Todos. https://www.gov.br/mme/pt-br/canais_atendimento

  22. Diniz, ASAC. Machado Neto, LVB, Camar, CF, et al. (2011). Review of photovoltaic energy programs in the State of Minas Gerais, Brasil. Renewable and Sustainable Energy Reviews 15, 2696–2706. https://doi.org/10.1016/j.rser.2011.03.003

  23. Diniz, ASAC, Alvarenda, CA, Almeida, FQ, & Mendoca, MSCC (1998). Current status and prospects of the photovoltaic rural electrification programmes in the state of Minas Gerais, Brazil. Progress in Photovoltaics 6, 365–377. https://doi.org/10.1002/(SICI)1099-159X(1998090)6:5<365::AID-PIP228>3.0.CO;2-C

    Article  Google Scholar 

  24. Ghandour. A (2005). Sustainable rural energy development in Brazil. 2004 DOE Solar Energy Technologies Program Review Meeting. October 25–28, 2004. Denver, Colorado. https://www.nrel.gov/docs/fy05osti/37638.pdf

  25. Diniz, ASAC, França, Tomé, J.L. et al (2002). An utility’s photovoltaic commercialization initiative: Progress of the Luz solar programme for rural electriccation. Proceedings 29th IEEE PVSC. https://doi.org/10.1109/PVSC.2002.1190889

  26. Eletrobras (2020). Programa Luz Para Todos - Resultados e Metas 2020, Rio de Janeiro, https://eletrobras.com/pt/Paginas/Luz-para-Todos.aspx

  27. Agencia Nacional de Energia Eletrica (ANEEL) (2012). Narrative 482/2012. https://www2.aneel.gov.br/cedoc/ren2012482.pdf

  28. CCEE (2022). Reserva Global de Reversão (RGR). https://www.ccee.org.br/mercado/contas-setoriais/conta-reserva-global-de-reversao-rgr

  29. Agencia Nacional de Energia Eletrica (ANEEL) (2015). Normative Resolution N 687/2015 2015, Brasilia, http://www2.aneel.gov.br/cedoc/ren2015687.pdf

  30. Köppen (1931). Die climate der Erde. Berlin, W. Guyter, 390 pages. https://diercke.westermann.de/content/klimate-der-erde-nach-köppengeiger-978-3-14-100700-8-229-3-0

  31. Köppen, W & Geiger. R (1928). Klimate der Erde. Verlag Justus Perthes, Gotha, Wall-Map 150 cm x 200 cm.

    Google Scholar 

  32. Instituto Nacional de Meteorologia (IMET) (2022). https://portal.inmet.gov.br

  33. Alvares, CA, Stape, JL, Sentelhas, PC, et al. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711–728. http://143.107.18.37/material/mftandra2/ACA0225/Alvares_etal_Koppen_climate_classBrazil_MeteoZei_2014.pdf

  34. Global Solar Atlas. https://globalsolaratlas.info/map?c=11.695273,8.261719,2; Also, Pereira, EB, Martins, FR, Gonçalves, AR, Costa, RS, et al. (2017). Atlas Brasilerio de energia solar. 2nd Ed. São José dos Campos: INPE, 2017. 80 pages. https://doi.org/10.34024/978851700089;

  35. Costa, SCS, Kazmerski, LL, & Diniz, ASAC (2021). Impact of soiling on Si and CdTe PV modules: Case study in different Brazil climate zones, Energy Conversion and Management 10, 100084, https://doi.org/10.1016/j.ecmx.2021.100084

    Article  Google Scholar 

  36. IBGE (2015). Instituto Brasileiro de Geografia e Estatística, Diretoria de Pesquisas, Coordenação de Trabalho e Rendimento. Pesquisa Nacional por Amostra de Domicílios.

    Google Scholar 

  37. BRASIL MME (2021), Ministério de Minas e Energia, Empresa de Pesquisa Energética. Plano Decenal de Expansão de Energia 2031. Brasília: MME/EPE, 2022.

    Google Scholar 

  38. Empresa Pesquisa Energética (EPE) (2021). Estudos do Plano Decenal de Expansão de Energia 2031.

    Google Scholar 

  39. Rodrigues, TT, Carlo, JC, & Oliveira, D. (2019). Influência de sistemas fotovoltaicos integrados a janelas no desempenho energético de edifícios de escritórios no Brasil. Cadernos do PROARQ (UFRJ), v. 33, p. 179–200.

    Google Scholar 

  40. Rodrigues, MG, Santo, DM. & Carlo, JC (2019). Simulação energética de unidades habitacionais baseada em usuários com modos de vida contemporâneo e tradicional. Cadernos do PROARQ (UFRJ), v. 33, p. 155–177.

    Google Scholar 

  41. Abrahão, KCF (2015). Avaliação dos pesos regionais do RTQ-R a partir da análise da estrutura do consumo residencial de energia elétrica por região geográfica. 2015. 244f. Dissertação (Mestrado). Programa de Pós-graduação em Ambiente Construído e Patrimônio Sustentável. Universidade Federal de Minas Gerais, Belo Horizonte.

    Google Scholar 

  42. Telles, CP (2016). Proposta de simplificação do RTQ-R. Dissertação (Mestrado). Programa de Pós-Graduação em Arquitetura e Urbanismo, Universidade Federal de Viçosa, Viçosa, 2016.

    Google Scholar 

  43. Rodrigues, MG, Carlo, JC (2020). Impactos da geração distribuída fotovoltaica e da tarifa branca no consumo do setor residencial. PARC: Pesquisa Em Arquitetura e Construção, v. 11, p. e020018.

    Google Scholar 

  44. Associação Brasileria de Normas Technicas (2005). NBR 15220: Desempenho térmico

    Google Scholar 

  45. Rüther, R, Nascimento, LR, Urbanetz Jr., J, Pfitscher, P, VIANA, T (2010). Long-term performance of the first grid-connected, building-integrated, thin-film amorphous silicon PV installation in Brazil. In: 35th IEEE Photovoltaic Specialists Conference, 2010, Honolulu – HI, EUA. Proceedings of the 35th IEEE Photovoltaic Specialists Conference. New York: IEEE, 2010. v. 1. p. 1–4. DOI: https://doi.org/10.1109/PVSC.2010.5617021

  46. National Renewable Energy Laboratory (NREL) (2022). Best Research Cell Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf ; Champion PV Module Efficiency Chart. https://www.nrel.gov/pv/module-efficiency.html

  47. Jardim, CS, Rüther, R, Viana, IT, Rebechi, SH, & Knob, PJ (2008). The strategic siting and the roofing area requirements of building-integrated photovoltaic solar energy generators in urban areas in Brazil. Energy and Buildings, 40, 365–370.

    Article  Google Scholar 

  48. Rüther, R, & Zilles, R (2011). Making the case for grid-connected photovoltaics in Brazil. Energy Policy 39, 1027–1030. https://doi.org/10.1016/j.enpol.2010.12.021

    Article  Google Scholar 

  49. Polo Lopez, CS, & Bonomo, P (2020). Traditional and emerging solar modules, current situation, market overview and new trends in BIPV. EMPR (Euromet). https://www.pv-enerate.ptb.de/16eng02-blogsingle.html?&tx_ttnews%5Btt_news%5D=756&cHash=7943ad961eed033e44632b46effaa396

  50. Museu de Amanhã, Rio de Janeiro (2022). Description on the website: https://atirsoft.com/Client-Projects/museu-do-amanha/

  51. TOTVS, Sao Paulo (2022). Filmes captam energia do sol. https://revistapesquisa.fapesp.br/filmes-captam-a-energia-do-sol/

  52. Sunew (2022). Website: https://sunew.com.br

  53. Zomer, CD, Costa, MR, Nobre, A, & Rüther, R (2013). Performance compromises of building-integrated and building-applied photovoltaics (BIPV and BAPV) in Brazilian airports. Energy and Buildings 66, 607–615. https://doi.org/10.1016/j.enbuild.2013.07.076

    Article  Google Scholar 

  54. Rüther, R., Braun, P. & Zomer, CD (2006). The potential of photovoltaics on airports. Proc. 21st European PV Solar Energy Conference. https://www.researchgate.net/publication/285732957_The_potential_of_photovoltaics_on_airports_WIP_Ed_21st_European_photovoltaic_solar_energy_conference

  55. Silva, AFBO, Silva, SM, Filho, BJC, & Lopes, BM (2014). Mineirão world cup stadium PV plant – A case study. 2014 11th IEEE/IAS International Conference on Industry Applications, 2014, pp. 1–6, DOI: https://doi.org/10.1109/INDUSCON.2014.7059437

  56. Sarver, T, Al-Qaraghuli, A. & Kazmerski, LL (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews 22, 698–733. DOI: https://doi.org/10.1016/j.rser.2012.12.065

    Article  Google Scholar 

  57. Cassini, DA, Costa SCS, Diniz, ASAC, & Kazmerski, L.L., Analysis of the soiling effects on commissioning of photovoltaic systems: Short-circuit current correction. Proc. of the 49th IEEE PVSC. https://doi.org/10.1109/PVSC48317.2022.9938616

  58. Fernández-Solas, Á, Montes, J, Micheli, L, Almonacid, F, & Fernández, EF (2022). Estimation of soiling losses in photovoltaic modules of different technologies through analytical methods. Energy 123173. https://doi.org/10.1016/j.energy.2022.123173

  59. Salamah, T, Ramahi, A, Alamara, K, Juaidi, A, Abdallah, R, Abdelkareem, MA, et al. (2022). Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Science of The Total Environment 827, 154050. https://doi.org/10.1016/j.scitotenv.2022.154050

    Article  Google Scholar 

  60. Sanz-Saiz, C, Polo, J, Martin-Chivelet, N, & Alonzo-García, MdC (2022). Soiling loss characterization in buildings: A systematic analysis for the Madrid region. Production 332, 130041. https://doi.org/10.1016/j.jclepro.2021.130041

    Article  Google Scholar 

  61. Deif, A (2018). Effect of dust accumulation and cleaning process on solar reflectivity of some building materials. In Proc. Seventh Intl. Conf. on Advances in Civil, Structural and Mechanical Engineering, pp 52–57. DOI: https://doi.org/10.15224/978-1-63248-163-4-22

  62. Costa, SCS, Kazmerski, LL, & Diniz, ASAC (2021). Estimate of Soiling Rates Based on Soiling Monitoring Station and PV System Data: Case Study for Equatorial-Climate Brazil, IEEE Journal of Photovoltaics 11, 461–468. DOI: https://doi.org/10.1109/JPHOTOV.2020.3047187

    Article  Google Scholar 

  63. Elnosh, A, Al-Ali, HO, John, JJ, Alnuaimi, A, Rodriguez, E, Stefancich, M, & Banda, P (2018). Field study of factors influencing performances of PV modules in buildings (BIPV/BAPV) installed in the UAE. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), Hawaii. DOI https://doi.org/10.1109/PVSC.2018.8547298

  64. Costa, SCS, Diniz, ASAC, & Kazmerski, LL (2018). Solar energy dust and soiling R&D progress: Literature review update for 2016. Renewable and Sustainable Energy Reviews 82, 2504–2536. https://doi.org/10.1016/j.rser.2017.09.015

    Article  Google Scholar 

  65. Ameur, A, Berrada, A, Bouaichi, A, & Loudiya, K (2022). Long-term performance and degradation analysis of different PV modules under temperate climate. Renewable Energy 188, 37–51. https://doi.org/10.1016/j.renene.2022.02.025

    Article  Google Scholar 

  66. Shirakawa MA, Zilles R, Mocelin A, Gaylarde CC, Gorbushina A, Heidrich G, Giudice MC, Del Negro GM, John VM. (2015). Microbial colonization affects the efficiency of photovoltaic panels in a tropical environment. J. Environ Management 157, 160–167. DOI: https://doi.org/10.1016/j.jenvman.2015.03.050

  67. Thebault, M, Clivillé, V, Berrah, L, & Desthieux, G (2020). Multicriteria roof sorting for the integration of photovoltaic systems in urban environments. Sustainable Cities and Society 60, 102259. https://doi.org/10.1016/j.scs.2020.102259

    Article  Google Scholar 

  68. Dehwah, AHA, & Asif, M (2019). Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates. Renewable Energy 131, 1288–1299. https://doi.org/10.1016/j.renene.2018.08.031

    Article  Google Scholar 

  69. Sinapis, K, Tsatsakis, K, Dörenkämper, M, & van Sark, WGHM (2021). Evaluation and Analysis of Selective Deployment of Power Optimizers for Residential PV Systems. Energies 14, 811. https://doi.org/10.3390/en14040811

    Article  Google Scholar 

  70. Chiteka, K, Arora, R, Sridhara, SN, & Enweremadu, CC (2021). Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading on a photovoltaic array. Energy 119289. https://doi.org/10.1016/j.energy.2020.119289

  71. Kazem HA, Chaichan MT, Alwaeli AH, & Mani K (2017), Effect of Shadows on the Performance of Solar Photovoltaic. In: Sayigh A (Ed) Mediterranean Green Buildings & Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-30746-6_27

    Chapter  Google Scholar 

  72. Kazem, HA, Chaichan, MT, Al-Waeli, AHA, & Sopian, L (2020). Evaluation of aging and performance of grid-connected photovoltaic system northern Oman: Seven years’ experimental study. Solar Energy 207, 1247–1258. https://doi.org/10.1016/j.solener.2020.07.061

    Article  Google Scholar 

  73. Guimarães, BdS, Farias, L, Filho, DO, Kazmerski, LL, & Diniz, ASAC (2022). Roof-mounted photovoltaic generator temperature modeling based on common Brazil roofing materials. Renew. Energy Environ. Sustain. 7, 5. https://doi.org/10.1051/rees/2021051

  74. Global Network on Energy for Sustainable Development (2014). Energy poverty in developing countries’ urban poor communities: Assessments and recommendations. Country Report by CENBIO/USP, Centro Clima/COPPE/UFRJ and POLICOM/POLI/UPE, SNESD, Roskilde, Denmark. http://gbio.webhostusp.sti.usp.br/sites/default/files/anexospaginas/1560168145_14.pdf

  75. Pilo, F (2016). Rio de Janeiro: Regulating favelas – Energy consumption and making consensus for customers. In book: Energy, Power and Protest on the Urban Grid. Geographies of the Electric City (pp.pp. 67-85, Publisher: Routledge, Editors: Andrés Luque-Ayala, Jonathan. DOI:https://doi.org/10.4324/9781315579597-4

  76. Suarez, J (2021). Rio de Janeiro Favelas Prove Potential of Solar Energy in Low-Income Areas, Center for Brazilian Studies, Center on Energy Justice and Efficiency in Rio’s Favelas. https://rioonwatch.org/?p=65592

  77. Caetano, DS, et al. (2022). Photovoltaic Solar Mapping of Vulnerable Areas as a Tool for the Development of Solar Energy Cooperatives in Slums. In, Proc. WCPEC-8, Milan, Italy (WIP, Gemany).

    Google Scholar 

  78. NovoSparadigmas (2022). RevoluSolar Energy solar no morro da Babilônia. https://www.novosparadigmas.org.br/pratica/energia-solar-morro-da-babilonia/

  79. Veja R. (2020). ONG carioca leva energia solar a favelas da Zona Sul do Rio https://vejario.abril.com.br/cidade/ong-carioca-energia-solar-favelas-zona-sul/

  80. CNN online (2020). Favelas Cariocas ganham a primeira. energia-solar-do-brasil/

  81. CatCom (2019). 1st sustainable favela network exchange of 2019 visits RevoluSolar and favela orgánica in Babilônia. https://catcomm.org/sfn-exchange-babilonia-2019/

  82. Brazil Government (2022). Diário Oficial de União, Lei No. 14.300, DE 6 DE JANEIRO DE 2022. https://in.gov.br/en/web/dou/-/lei-n-14.300-de-6-de-janeiro-de-2022-372467821

Download references

Acknowledgments

The authors gratefully acknowledge the support and assistance of the Graduate Program in Mechanical Engineering, Pontifícia Universidade Católica de Minas Gerais (PUC Minas), Grupo de Estudos em Energia (GREEN PUC Minas), Belo Horizonte, the Architecture and Urbanism Graduate Programa of the Universidade Federal de Viçosa (UFV) and Brazil CAPES. We also acknowledge the support of the Fulbright Foundation under which L.L. Kazmerski was a 2022 Fulbright Scholar in Brazil during the development of this chapter and reflects part of this project. Finally, we thank Dr. Ali Sayigh, Editor of this book, for discussions and his advocacy on the need and potential for renewable energy and special energy concerns in the built environment over the three decades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Sônia A. C. Diniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diniz, A.S.A.C., Carlo, J.C., Costa, S.C.S., Kazmerski, L.L. (2024). Photovoltaics and the Built Environment in Brazil. In: Sayigh, A. (eds) Reducing the Effects of Climate Change Using Building-Integrated and Building-Applied Photovoltaics in the Power Supply. Innovative Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-42584-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42584-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42583-7

  • Online ISBN: 978-3-031-42584-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics