Skip to main content

A Historical Perspective on the Biogeography of the Pampa Region: Imprints of Time and Origins of Its Flora

  • Chapter
  • First Online:
South Brazilian Grasslands

Abstract

The Pampa, also known as Río de la Plata grassland region, is arguably one of the most diverse and largest grassland areas in the world, yet timing, origin, and assembling of its flora are not well understood. Here, we provide a first comprehensive overview of the angiosperm historical biogeography in the Pampa and neighboring regions, by integrating a comprehensive phylogeny with 70,040 species, occurrence datasets, and models of geographical range evolution. The richness distribution of species sampled in our analyses is highly congruent with reports from the literature, where the Campos subregion in the North has higher levels of absolute species number and endemism. Also, our results corroborate long-standing views from phytogeography, such as a great number of lineages shared among the Pampa, Atlantic Forest, Cerrado, Chaco, and Andes, and a great exchange of lineages among these regions. Our results suggest that the Pampa is a macroevolutionary sink of angiosperm diversity, where a strong asymmetry of lineage exchange from other areas to the Pampa was detected. Our results are also in agreement with evidence from the fossil record, placing both lineage exchange (dispersals) and sympatric events (diversification) related to the Pampa very recently in geological time, with estimates concentrated in the Pliocene onward (with a great increase during the Pleistocene). Altogether, our results demonstrated the complex origin and dynamism of the Pampa flora and the importance of dispersal events for its assembly. Finally, putative caveats and future directions to further uncover the origins of the Pampa flora are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade B, Marchesi E, Burkart S, Bernal Setubal R, Lezama F, Perelman S, Schneider AA, Trevisan R, Overbeck GE, Boldrini I (2018) Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot J Linn Soc 188:250–256

    Google Scholar 

  • Andrade B, Bonilha CL, Overbeck GE, Vélez-Martin E, Rolim RG, Bordignon SAL, Schneider AA, Vogel EC, Lucas DB, Garcia ÉN, dos Santos ED, Torchelsen FP, Vieira MS, Silva Filho PJS, Ferreira PMA, Trevisan R, Hollas R, Campestrini S, Pillar VD, Boldrini II (2019) Classification of South Brazilian grasslands: implications for conservation. Appl Veg Sci 22(1):168–184

    Article  Google Scholar 

  • Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018) Amazonia is the primary source of Neotropical biodiversity. PNAS 115(23):6034–6039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armesto JJ, León-Lobos P, Kalin Arroyo M (1995) Los bosques templados del sur de Chile y Argentina: una isla biogoegráfica. In: Armesto JJ, Villagran C, Kalin Arroyo M (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago de Chile, pp 23–28

    Google Scholar 

  • Arroyo MT, Cavieres L, Peñaloza A, Riveros M, Faggi AM, Armesto JJ, Villagrán C, Kalin Arroyo ME (1996) Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Ecología de los bosques nativos de Chile, pp 71–99

    Google Scholar 

  • Azevedo JA, Collevatti RG, Jaramillo CA, Strömberg CA, Guedes TB, Matos-Maraví P, Bacon CD, Carillo JD, Faurby S, Antonelli A (2020) On the young savannas in the land of ancient forests. In: Rull V, Carnaval A (eds) Neotropical diversification: patterns and processes. Fascinating life sciences. Springer, Cham, pp 271–298

    Chapter  Google Scholar 

  • Baeza S, Vélez-Martin E, De Abelleyra D, Banchero S, Gallego F, Schirmbeck J, Veron S, Vallejos M, Weber E, Oyarzabal M, Barbieri A (2022) Two decades of land cover mapping in the Río de la Plata grassland region: The MapBiomas Pampa initiative. Remote Sensing Applications: Society and Environment 28:100834

    Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217(1–2):10–29

    Article  Google Scholar 

  • Behling H, Pillar VD, Bauermann SG (2005) Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (Southern Brazil). Rev Palaeobot Palynol 133(3–4):235–248

    Article  Google Scholar 

  • Behling H, Pillar VDP, Müller SC, Overbeck GE (2007) Late-Holocene fire history in a forest-grassland mosaic in southern Brasil: implications for conservation. Appl Veg Sci 10(1):81–90

    Article  Google Scholar 

  • Behling H, Jeske-Pieruschka V, Schüler L, Pillar VDP (2009) Dinâmica dos campos no sul do Brasil durante o Quaternário Tardio. In: Pillar VDP, Müller SC, Castilhos ZM, Jacques AV (eds) Campos Sulinos – conservação e uso sustentável da biodiversidade. MMA, Brasília, pp 13–25

    Google Scholar 

  • Berretta EJ, Risso DF, Montossi F, Pigurina G (2000) Campos in Uruguay. In: Lemaire G, Hodgson J, Moraes A, Carvalho PCF, Nabinger C (eds) Grassland ecophysiology and grazing ecology. CAB International, Wallingford/Oxon, pp 377–394

    Chapter  Google Scholar 

  • Boechat SC, Longhi-Wagner HM (2000) Padrões de distribuiçãoo dos táxons brasileiros de Eragrostis (Poaceae– Chloridoideae). Rev Bras Bot 23:177–194

    Article  Google Scholar 

  • Boldrini II (2009) A flora dos campos do Rio Grande do Sul. In: Pillar VDP, Müller SC, Castilhos ZM, Jacques AV (eds) Campos Sulinos – conservação e uso sustentável da biodiversidade. MMA, Brasília, pp 63–77

    Google Scholar 

  • Bond WJ (2008) What limits trees in C4 grasslands and savannas? Annu Rev Ecol Evol Syst 39:641–659

    Article  Google Scholar 

  • Bond WJ (2019) Open ecosystems: ecology and evolution beyond the forest edge. Oxford University Press

    Book  Google Scholar 

  • Bond WJ, Woodward FI, Kidgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JM, Heiden G, Valtierra MV, Marchesi E (2020) Baccharis funkiae (Compositae: Astereae), a new narrow endemic species from Uruguay. Syst Bot 45(4):937–942

    Article  Google Scholar 

  • Bredenkamp GJ, Spada F, Kazmierczak E (2002) On the origin of northern and southern hemi– sphere grasslands. Plant Ecol 163:209–229

    Article  Google Scholar 

  • Burkart A (1975) Evolution of grasses and grasslands in South America. Taxon 24:53–66

    Article  Google Scholar 

  • Burke IC, Lauenroth WK, Vinton MA, Hook PB, Kelly RH, Epstein HE, Aguiar MR, Robles MD, Aguilera MO, Murphy KL, Gill RA (1998) Plant–soil interactions in temperate grasslands. In: Breemen N (ed) Plant–induced soil changes: processes and feedbacks. Springer, Dordrecht, pp 121–143

    Chapter  Google Scholar 

  • Cabrera AL (1951) Territorios fitogeográficos de la República Argentina. Bol Soc Argent Bot 4(1–2):21–65

    Google Scholar 

  • Cabrera AL (1976) Regiones fitogeograficas Argentina. Enciclopedia Argentina de Agricultura y jardinería, Fasc. 1, 2nd edn. II Acme, Buenos Aires

    Google Scholar 

  • Cabrera AL, Willink A (1980) Biogeografía de América Latina. Segunda edición corregida. Colección de Monografías Científicas de la Secretaría General de la Organización de los Estados Americanos. Programa Regional de Desarrollo Científico y Tecnológico, Washington, DC

    Google Scholar 

  • Catálogo de las Plantas Vasculares del Conosur (2021) Instituto de Botânica Darwinion, Argentina. http://www.darwin.edu.ar/Proyectos/FloraArgentina/fa.htm. Accessed 7 June 2021

  • Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L, Ram K (2021) Rgbif: Interface to the global biodiversity information facility API. R package version 3.6.0. https://CRAN.R–project.org/package=rgbif

    Google Scholar 

  • Chaneton EJ, Mazía N, Batista WB, Rolhauser AG, Ghersa CM (2012) Woody plant invasions in Pampa grasslands: a biogeographical and community assembly perspective. In: Myster RW (ed) Ecotones between forest and grassland. Springer, New York, pp 115–144

    Chapter  Google Scholar 

  • Christenhusz MJ, Chase MW (2013) Biogeographical patterns of plants in the Neotropics–dispersal rather than plate tectonics is most explanatory. Bot J Linn Soc 171(1):277–286

    Article  Google Scholar 

  • Clayton JW, Soltis PS, Soltis DE (2009) Recent long–distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol 58(4):395–410

    Article  PubMed  Google Scholar 

  • Coet MJ, Dilcher JO, Farlow JO, Jarzen DM, Russell DA (1987) Dinosaurus and land plants. In: Friis EM, Chaloner WG, Crane PR (eds) The origins of angiosperms and their biological consequences. Cambridge University Press, New York, pp 225–258

    Google Scholar 

  • Crisci JV, Freire SE, Sancho G, Katinas L (2001) Historical biogeography of the Asteraceae from Tandilia and Ventania mountain ranges (Buenos Aires, Argentina). Caldasia 23:21–41

    Google Scholar 

  • de la Sota ER (1967) Composición, origen y vinculaciones de la flora pteridológica de las sierras de Buenos Aires (Argentina). Bol Soc Argent Bot 2–3:105–128

    Google Scholar 

  • de la Sota ER, Guidice GE, Ponce M, Ramos Giacosa JP, Arturi M (2004) Relaciones Fitogeográficas de la flora Pteridofítica Serrana Bonaerense. Bol Soc Argent Bot 39:181–194

    Google Scholar 

  • Deble LP (2021) Hysterionica chamomilloides (Asteraceae: Astereae) a new species from the grassland ecosystem of Río de La Plata. Phytotaxa 482(1):36–44

    Article  Google Scholar 

  • Dos Santos DA, Domínguez E, Miranda MJ, Gregoric DG, Cuezzo MG (2021) The relevance of ecoregions and mountainous environments in the diversity and endemism of land gastropods. Prog Phys Geogr Earth Environ 45(2):228–252

    Article  Google Scholar 

  • Ferretti N, González A, Pérez-Miles F (2012) Historical biogeography of mygalomorph spiders from the peripampasic Orogenic Arc based on track analysis and PAE as a panbiogeographical tool. Syst Biodivers 10:179–193

    Article  Google Scholar 

  • Fiaschi P, Pirani JR (2009) Review of plant biogeographic studies in Brazil. J Syst Evol 47(5):477–496

    Article  Google Scholar 

  • Flora do Brasil (2020) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed 7 June 2021

  • Frankiewicz KE, Banasiak Ł, Oskolski A, Reduron JP, Reyes-Betancort JA, Alsarraf M, Trzeciak T, Spalik K (2022) Long–distance dispersal events rather than growth habit and life–history traits affect diversification rate in tribe Apieae (Apiaceae). Bot J Linn Soc 198(1):1–25

    Article  Google Scholar 

  • Frenguelli J (1950) Rasgos generales de la morfología y la geología de la provincia de Buenos Aires. LEMIT 2(33):3–72

    Google Scholar 

  • García RA, Palacio AD (2021) Peripampasic Arc: a route of dispersion for lichens. An Acad Bras Cienc 93(3):e20191208

    Article  PubMed  Google Scholar 

  • GBIF.org (2021) GBIF Home Page. https://www.gbif.org. Accessed 20 Dec 2021

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, New York

    Google Scholar 

  • Goldberg EE, Roy K, Lande R, Jablonski D (2005) Diversity, endemism, and age distributions in macroevolutionary sources and sinks. Am Nat 165(6):623–633

    Article  PubMed  Google Scholar 

  • González A, Fernández M, Ezcurra C (2018) Oxypetalum marchesii (Apocynaceae, Asclepiadoideae), an endemic new species from Uruguay. Syst Bot 43(3):812–817

    Article  Google Scholar 

  • Gonzatti F, Valduga E, Scur L, Wasum RA (2021) Flora fanerogâmica do litoral centro–norte do Rio Grande do Sul, Brasil. Rodriguésia 72:e03312018

    Article  Google Scholar 

  • Grattarola F, González A, Mai P, Cappuccio L, Fagúndez-Pachón C, Rossi F, Teixeira de Mello F, Urtado L, Pincheira-Donoso D (2020) Biodiversidata: a novel dataset for the vascular plant species diversity in Uruguay. Biodivers Data J 8:e56850

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrero EL, Agnolin F, Benedictto M, Gambeta D, Lara F, Derguy MR, Apodaca MJ (2018) Vascular plant species of the floating vegetation rafts from the Río de la Plata (Argentina). Rodriguésia 69:04

    Article  Google Scholar 

  • Harris AJ, Ickert-Bond S, Rodríguez A (2018) Long-distance dispersal in the assembly of floras: a review of progress and prospects in North America. J Syst Evol 56(5):430–448

    Article  Google Scholar 

  • Hughes CE, Pennington RT, Antonelli A (2013) Neotropical plant evolution: assembling the big picture. Bot J Linn Soc 171(1):1–18

    Article  Google Scholar 

  • Iganci JR, Heiden G, Miotto STS, Pennington RT (2011) Campos de Cima da Serra: the Brazilian Subtropical Highland Grasslands show an unexpected level of plant endemism. Bot J Linn Soc 167(4):378–393

    Article  Google Scholar 

  • Iriarte J (2006) Vegetation and climate change since 14,810 14C yr BP in southeastern Uruguay and implications for the rise of early Formative societies. Quat Res 65(1):20–32

    Article  Google Scholar 

  • Iriondo M (1999) Climatic changes in the South American plains: records of a continent–scale oscillation. Quat Int 57:93–112

    Article  Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass–dominated ecosystems. Ann Missouri Bot Gard 86(2):590–643

    Google Scholar 

  • Kadereit JW, Abbott RJ (2022) Plant speciation in the quaternary. Plant Ecol Divers. https://doi.org/10.1080/17550874.2021.2012849

  • Keller HA, Funez LA, Liede-Schumann S (2021) Novelties in Oxypetalum (Apocynaceae: Asclepiadoideae): a new species and revalidation of the name O. megapotamicum. Rodriguésia 72:e01692019

    Article  Google Scholar 

  • Köhler M, Esser LF, Font F, Souza-Chies TT, Majure LC (2020) Beyond endemism, expanding conservation efforts: what can new distribution records reveal? Perspect Plant Ecol Evol Syst 45:125543

    Article  Google Scholar 

  • Külkamp J, Heiden G, Iganci JRV (2018) Endemic plants from the southern Brazilian Highland grasslands. Rodriguésia 69:429–440

    Article  Google Scholar 

  • Kurtz F (1904) Flora. In: Río M, Achaval L (eds) Geografía de la Provincia de Córdoba I. Compañía Sudamericana de Billetes de Banco, Buenos Aires, pp 270–243

    Google Scholar 

  • Lorenz-Lemke AP, Togni PD, Mäder G, Kriedt RA, Stehmann JR, Salzano FM, Bonatto SL, Freitas LB (2010) Diversification of plant species in a subtropical region of eastern South American highlands: a phylogeographic perspective on native Petunia (Solanaceae). Mol Ecol 19:5240–5251

    Article  PubMed  Google Scholar 

  • Mäder G, Freitas LB (2019) Biogeographical, ecological, and phylogenetic analyses clarifying the evolutionary history of Calibrachoa in South American grasslands. Mol Phylogenet Evol 141:106614

    Article  PubMed  Google Scholar 

  • Mäder G, Fregonezi JN, Lorenz-Lemke AP, Bonatto SL, Freitas LB (2013) Geological and climatic changes in quaternary shaped the evolutionary history of Calibrachoa heterophylla, an endemic South–Atlantic species of petunia. BMC Evol Biol 13(1):1–13

    Article  Google Scholar 

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzke NJ (2013) Founder–event speciation in BioGeoBEARS package dramatically improves likelihoods and alters parameter inference in Dispersal–Extinction–Cladogenesis (DEC) analyses. Front Biogeogr 4(1):210

    Google Scholar 

  • Mendoza-Díaz N, Díaz M, Brussa P, Muñoz F, Bonifacino JM, Flores-Olvera H (2020) White flowers in South America: a new species of Antiphytum (Echiochiloideae, Boraginaceae). Syst Bot 45(4):913–920

    Article  Google Scholar 

  • Morello J (1958) La provincia fitogeográfica del Monte. Universidad Nacional del Tucumán, Instituto Miguel Lillo, Tucumán

    Google Scholar 

  • Moreno ES, de Freitas LB, Speranza PR, Solís Neffa VG (2018) Impact of Pleistocene geoclimatic events on the genetic structure in mid–latitude South American plants: insights from the phylogeography of Turnera sidoides complex (Passifloraceae, Turneroideae). Bot J Linn Soc 188(4):377–390

    Google Scholar 

  • Morrone JJ (2001) Biogeografía de América Latina y el Caribe. M&T–Manuales & Tesis SEA, Zaragoza

    Google Scholar 

  • Mourelle D, Prieto AR, García-Rodríguez F (2017) Riparian woody vegetation history in the campos region, southeastern South America, during two time windows: late Pleistocene and late Holocene. Quat Sci Rev 167:14–29

    Article  Google Scholar 

  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DR (2015) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 8(3):242–260

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933–938

    Article  Google Scholar 

  • Ortiz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environ 66(3):498–532

    Article  Google Scholar 

  • Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC, Boldrini II, Both R, Forneck ED (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst 9(2):101–116

    Article  Google Scholar 

  • Overbeck GE, Vélez-Martin E, da Silva Menezes L, Anand M, Baeza S, Carlucci MB, Dechoum MS, Durigan G, Fidelis A, Guido A, Moro MF, Munhoz CBR, Reginato M, Rodrigues RS, Rosenfield MF, Sampaio AB, Silva FHB, Silveira FAO, Sosinski Jr EE, Staude IE, Temperton VM, Turchetto C, Veldman JW, Viana PL, Zappi DC, Müller SC (2022) Placing Brazil’s grasslands and savannas on the map of science and conservation. PPEES 53:125687. https://doi.org/10.1016/j.ppees.2022.125687

  • Oyarzabal M, Andrade B, Pillar VD, Paruelo J (2019) Temperate subhumid grasslands of southern South America. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the World’s biomes, reference module in earth systems and environmental sciences. Elsevier, pp 1–17

    Google Scholar 

  • Palazzesi L, Hidalgo O, Barreda VD, Forest F, Höhna S (2022) The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene. Nat Commun 13:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  CAS  PubMed  Google Scholar 

  • Paruelo JM, Lauenroth WK, Epstein H, Burke I, Aguiar MR, Sala OE (1995) Regional climatic similarities in the temperate zones of North and South America. J Biogeogr 22:2689–2699

    Article  Google Scholar 

  • Paruelo JM, Jobbágy EG, Oesterheld M, Golluscio RA, Aguiar MR (2007) The grasslands and steppes of Patagonia and the Río de la Plata plains. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, Oxford, pp 232–248

    Google Scholar 

  • Pasini E, Miotto ST (2020) Trichocline minuana (Compositae, Mutisieae), a new species endemic to the Pampas in Southern Brazil and Uruguay. Rodriguésia 71:e02202018

    Article  Google Scholar 

  • Pennington RT, Dick CW (2004) The role of immigrants in the assembly of the South American rainforest tree flora. Philos Trans R Soc Lond Ser B Biol Sci 359:1611–1622

    Article  Google Scholar 

  • Pennington RT, Cronk QC, Richardson JA (2004) Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos Trans R Soc Lond Ser B Biol Sci 359(1450):1455–1464

    Article  Google Scholar 

  • Pillar V, Müller SC, Castilhos ZM, Jacques AV (2009) Campos sulinos— conservação e uso sustentável da biodiversidade. Ministério do Meio Ambiente, Brasilia

    Google Scholar 

  • Plá C, Külkamp J, Heiden G, Lughadha EN, Iganci J (2020) The importance of the Brazilian Subtropical Highland Grasslands evidenced by a taxonomically verified endemic species list. Phytotaxa 452(4):250–267. (ERRATUM). Phytotaxa 454(2):159–160

    Article  Google Scholar 

  • POWO (2022) Plants of the world online. Facilitated by the Royal Botanic Gardens Kew. http://www.plantsoftheworldonline.org/. Accessed 4 Jan 2022

  • Prieto AR (1996) Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quat Res 45:73–88

    Article  Google Scholar 

  • Prieto AR (2000) Vegetational history of the late glacial–Holocene transition in the grasslands of eastern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 157:167–188

    Article  Google Scholar 

  • Rambo (1954) Análise histórica da flora de Pôrto Alegre. Sellowia 6:9–112

    Google Scholar 

  • Reck-Kortmann M, Silva-Arias GA, Segatto ALA, Mäder G, Bonatto SL, de Freitas LB (2014) Multilocus phylogeny reconstruction: new insights into the evolutionary history of the genus Petunia. Mol Phylogenet Evol 81:19–28

    Article  PubMed  Google Scholar 

  • Reck-Kortmann M, Silva-Arias GA, Stehmann JR, Greppi JA, Freitas LB (2015) Phylogenetic relationships of Petunia patagonica (Solanaceae) revealed by molecular and biogeographical evidence. Phytotaxa 222(1):17–32

    Article  Google Scholar 

  • Reginato M (2016) monographaR: an R package to facilitate the production of plant taxonomic monographs. Brittonia 68(2):212–216

    Article  Google Scholar 

  • Reginato M, Vasconcelos TN, Kriebel R, Simões AO (2020) Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae? Mol Phylogenet Evol 148:106815

    Article  PubMed  Google Scholar 

  • Rezende VL, Bueno ML, de Oliveira-Filho AT (2016) Patterns of tree composition in the southern cone of South America and its relevance to the biogeographic regionalization. Plant Ecol 217(1):97–110

    Article  Google Scholar 

  • Sala OE (2001) Temperate grasslands. In: Chapin FS, Sala OE, Huber-Sannwald E (eds) Global biodiversity in a changing environment: scenarios for the 21st century. Springer, New York, pp 121–137

    Chapter  Google Scholar 

  • Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000–tip tree. BMC Evol Biol 13:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva GAR, Antonelli A, Lendel A, Moraes EDM, Manfrin MH (2018) The impact of early Quaternary climate change on the diversification and population dynamics of a South American cactus species. J Biogeogr 45(1):76–88

    Article  Google Scholar 

  • Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106(48):20359–20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SA, Brown JW (2018) Constructing a broadly inclusive seed plant phylogeny. Am J Bot 105(3):302–314

    Article  PubMed  Google Scholar 

  • Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JB (1991) Río de la Plata grasslands. In: Coupland RT (ed) Natural grasslands. Introduction and western hemisphere. Elsevier, Amsterdam, pp 367–407

    Google Scholar 

  • Spriggs EL, Christin PA, Edwards EJ (2014) C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS One 9(5):e97722

    Article  PubMed  PubMed Central  Google Scholar 

  • Staude IR, Vélez-Martin E, Andrade BO, Podgaiski LR, Boldrini II, Mendonca M Jr, Pillar VD, Overbeck GE (2018) Local biodiversity erosion in south Brazilian grasslands under moderate levels of landscape habitat loss. J Appl Ecol 55(3):1241–1251

    Article  Google Scholar 

  • Strömberg CA (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544

    Article  Google Scholar 

  • Torres V, Hooghiemstra H, Lourens L, Tzedakis PC (2013) Astronomical tuning of long pollen records reveals the dynamic history of montane biomes and lake levels in the tropical high Andes during the Quaternary. Quat Sci Rev 63:59–72

    Article  Google Scholar 

  • Turchetto-Zolet AC, Salgueiro F, Turchetto C, Cruz F, Veto NM, Barros MJ et al (2016) Phylogeography and ecological niche modelling in Eugenia uniflora (Myrtaceae) suggest distinct vegetational responses to climate change between the southern and the northern Atlantic Forest. Bot J Linn Soc 182(3):670–688

    Article  Google Scholar 

  • Valtierra MV, Marchesi E, Heiden G, Bonifacino JM (2021) Baccharis rectialata (Compositae: Astereae): a new species of carqueja from Uruguay. Phytotaxa 478(2):253–260

    Article  Google Scholar 

  • Vasconcelos MFD (2011) O que são campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil? Braz J Bot 34:241–246

    Google Scholar 

  • Vasconcelos TN, Alcantara S, Andrino CO, Forest F, Reginato M, Simon MF, Pirani JR (2020) Fast diversification through a mosaic of evolutionary histories characterizes the endemic flora of ancient Neotropical mountains. Proc R Soc Lond B 287(1923):20192933

    Google Scholar 

  • Vitousek P (2015) Grassland ecology: complexity of nutrient constraints. Nat Plants 1:15098

    Article  CAS  PubMed  Google Scholar 

  • Waechter JL (2002) Padrões geográficos na flora atual do Rio Grande do Sul. Ciência Ambiente 24(1):93–108

    Google Scholar 

  • Werneck FP, Nogueira C, Colli GR, Sites JW Jr, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39(9):1695–1706

    Google Scholar 

  • Yan L (2021) ggvenn: draw Venn diagram by ‘ggplot2’. R package version 0.1.9. https://CRAN.R-project.org/package=ggvenn

  • Zizka A, Carvalho FA, Calvente A, Baez-Lizarazo MR, Cabral A, Coelho JFR, Colli-Silva M, Fantinati M, Fernandes M, Ferreira-Araújo T, Moreira F, Santos N, Santos T, Santos-Costa R, Serrano F, Silva A, Soares A, Souza P, Tomaz E, Vale V, Vieira T, Antonelli A (2020) No one–size–fits–all solution to clean GBIF. PeerJ 8:e9916

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the editors for the invitation to contribute a chapter on this topic and an anonymous reviewer for valuable comments. We are grateful to Anderson Santos de Mello (Práticas em Botânica LTDA), for insightful discussions and valuable references for this study, and Sérgio A.L. Bordignon (Universidade La Salle) for the Perezia image used in Fig. 5.2. MK thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for his postdoctoral scholarship. MR thanks CNPq for his Bolsa Produtividade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Reginato .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baez-Lizarazo, M.R., Köhler, M., Reginato, M. (2024). A Historical Perspective on the Biogeography of the Pampa Region: Imprints of Time and Origins of Its Flora. In: Overbeck, G.E., Pillar, V.D.P., Müller, S.C., Bencke, G.A. (eds) South Brazilian Grasslands. Springer, Cham. https://doi.org/10.1007/978-3-031-42580-6_5

Download citation

Publish with us

Policies and ethics