Skip to main content

Unsupervised Representation Learning: Target Regularization for Cross-Domain Sentiment Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

This article proposes an autoencoder-based domain invariant feature representation learning approach to domain adaptation and the cross-domain text classification problem. Finding domain invariant feature representations is a transfer learning method for transmitting knowledge between source and target domain data. Our method aims to avoid the overfitting of an autoencoder model on source domain training data in a trained embedded feature space using a target regularization technique. We hypothesize that when forcing the semantic similarity of target domain representation to source domain representation by adding the source domain similarity penalty to reconstruction loss during autoencoder training, the penalty is greater when the the domain’s representations separability is. In this work, we contribute to domain adaptation by demonstrating that a regularization technique based on an auxiliary pretrained domain classification model can be used to build robust, shared domain feature representations. Our model achieves a classification accuracy improvement in standard cross-domain sentiment classification tasks over the baseline model in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cs.jhu.edu/~mdredze/datasets/sentiment/.

  2. 2.

    The code is available at https://github.com/mmichall/atuda-pytorch.

  3. 3.

    We experimented with \(P_n \in \{0.3, 0.5, 0.7, 0.9\}\).

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein Generative Adversarial Networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR (06–11 Aug 2017)

    Google Scholar 

  2. Ben-David, E., Rabinovitz, C., Reichart, R.: PERL: Pivot-based Domain Adaptation for Pre-trained Deep Contextualized Embedding Models. CoRR abs/2006.09075 (2020)

    Google Scholar 

  3. Ben Zaken, E., Goldberg, Y., Ravfogel, S.: BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-short.1

  4. Blitzer, J., Dredze, M., Pereira, F.: Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 440–447. Association for Computational Linguistics, Prague, Czech Republic (Jun 2007). www.aclanthology.org/P07-1056

  5. Blitzer, J., McDonald, R., Pereira, F.: Domain Adaptation with Structural Correspondence Learning. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 120–128. Association for Computational Linguistics, Sydney, Australia (2006). www.aclanthology.org/W06-1615

  6. Chen, M., Xu, Z., Weinberger, K.Q., Sha, F.: Marginalized Denoising Autoencoders for Domain Adaptation. In: Proceedings of the 29th International Conference on International Conference on Machine Learning, pp. 1627–1634. ICML’12, Omnipress, Madison, WI, USA (2012)

    Google Scholar 

  7. Clinchant, S., Csurka, G., Chidlovskii, B.: A Domain Adaptation Regularization for Denoising Autoencoders. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 26–31. Association for Computational Linguistics, Berlin, Germany (2016). https://doi.org/10.18653/v1/P16-2005, www.aclanthology.org/P16-2005

  8. Dong, X., de Melo, G.: A Helping Hand: Transfer Learning for Deep Sentiment Analysis. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2524–2534. Association for Computational Linguistics, Melbourne, Australia (Jul 2018). 10.18653/v1/P18-1235, www.aclanthology.org/P18-1235

  9. Ganin, Y., Lempitsky, V.: Unsupervised Domain Adaptation by Backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, p. 1180–1189. ICML’15, JMLR.org (2015)

    Google Scholar 

  10. Ganin, Y., et al.: Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    Google Scholar 

  11. Glorot, X., Bordes, A., Bengio, Y.: Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach. In: Proceedings of the 28th International Conference on International Conference on Machine Learning. p. 513–520. ICML’11, Omnipress, Madison, WI, USA (2011)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative Adversarial Nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  13. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A Kernel Method for the Two-Sample-Problem. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19. MIT Press (2006)

    Google Scholar 

  14. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.: Covariate Shift by Kernel Mean Matching. In: Dataset Shift in Machine Learning. The MIT Press (12 2008). https://doi.org/10.7551/mitpress/9780262170055.003.0008

  15. Han, X., Eisenstein, J.: Unsupervised Domain Adaptation of Contextualized Embeddings for Sequence Labeling. In: EMNLP (2019)

    Google Scholar 

  16. Howard, J., Ruder, S.: Universal Language Model Fine-tuning for Text Classification, pp. 328–339 (2018). https://doi.org/10.18653/v1/P18-1031

  17. Jiang, J., Zhai, C.: Instance Weighting for Domain Adaptation in NLP. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 264–271. Association for Computational Linguistics, Prague, Czech Republic (2007)

    Google Scholar 

  18. Li, Z., Wei, Y., Zhang, Y., Yang, Q.: Hierarchical Attention Transfer Network for Cross-Domain Sentiment Classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 no.(1) (2018). https://doi.org/10.1609/aaai.v32i1.12055, www.ojs.aaai.org/index.php/AAAI/article/view/12055

  19. Li, Z., Zhang, Y., Wei, Y., Wu, Y., Yang, Q.: End-to-End Adversarial Memory Network for Cross-domain Sentiment Classification. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 2237–2243 (2017). https://doi.org/10.24963/ijcai.2017/311

  20. Miller, T.: Simplified Neural Unsupervised Domain Adaptation. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 414–419. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1039, www.aclanthology.org/N19-1039

  21. Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: Proceedings of the 19th International Conference on World Wide Web. p. 751–760. WWW ’10, Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1772690.1772767

  22. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  23. Peng, M., Zhang, Q., Jiang, Y.g., Huang, X.: Cross-domain sentiment classification with target domain specific information. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2505–2513. Association for Computational Linguistics, Melbourne, Australia (Jul 2018). https://doi.org/10.18653/v1/P18-1233, www.aclanthology.org/P18-1233

  24. Ramponi, A., Plank, B.: Neural Unsupervised Domain Adaptation in NLP–A Survey. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 6838–6855. International Committee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.603

  25. Ramponi, A., Plank, B.: Neural Unsupervised Domain Adaptation in NLP-A Survey. ArXiv:abs/2006.00632 (2020)

  26. Ruder, S., Plank, B.: Strong Baselines for Neural Semi-supervised Learning under Domain Shift. CoRR abs/1804.09530 (2018)

    Google Scholar 

  27. Saito, K., Ushiku, Y., Harada, T.: Asymmetric Tri-training for Unsupervised Domain Adaptation. CoRR abs/1702.08400 (2017)

    Google Scholar 

  28. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein Distance Guided Representation Learning for Domain Adaptation. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18, AAAI Press (2018)

    Google Scholar 

  29. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ICML ’08, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1390156.1390294

  30. Yang, Y., Eisenstein, J.: Fast Easy Unsupervised Domain Adaptation with Marginalized Structured Dropout. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 538–544. Association for Computational Linguistics, Baltimore, Maryland (2014). https://doi.org/10.3115/v1/P14-2088, www.aclanthology.org/P14-2088

  31. Zhuang, F., Cheng, X., Luo, P., Pan, S.J., He, Q.: Supervised representation learning: Transfer learning with deep autoencoders. In: IJCAI (2015)

    Google Scholar 

  32. Ziser, Y., Reichart, R.: Deep pivot-based modeling for cross-language cross-domain transfer with minimal guidance. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 238–249. Association for Computational Linguistics, Brussels, Belgium (Oct-Nov 2018). https://doi.org/10.18653/v1/D18-1022, www.aclanthology.org/D18-1022

  33. Ziser, Y., Reichart, R.: Pivot based language modeling for improved neural domain adaptation. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1241–1251. Association for Computational Linguistics, New Orleans, Louisiana (Jun 2018). https://doi.org/10.18653/v1/N18-1112, www.aclanthology.org/N18-1112

  34. Ziser, Y., Reichart, R.: Task refinement learning for improved accuracy and stability of unsupervised domain adaptation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5895–5906. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1591, www.aclanthology.org/P19-1591

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Perełkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perełkiewicz, M., Poświata, R., Kierzkowski, J. (2023). Unsupervised Representation Learning: Target Regularization for Cross-Domain Sentiment Classification. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42505-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42504-2

  • Online ISBN: 978-3-031-42505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics