Skip to main content

Graph-Enriched Biomedical Entity Representation Transformer

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2023)

Abstract

Infusing external domain-specific knowledge about diverse biomedical concepts and relationships into language models (LMs) advances their ability to handle specialised in-domain tasks like medical concept normalization (MCN). However, existing biomedical LMs are primarily trained with contrastive learning using synonymous concept names from a terminology (e.g., UMLS) as positive anchors, while accurate aggregation of the features of graph nodes and neighbors remains a challenge. In this paper, we present Graph-Enriched Biomedical Entity Representation Transformer (GEBERT) which captures graph structural data from the UMLS via graph neural networks and contrastive learning. In GEBERT, we enrich the entity representations by introducing an additional graph-based node-level contrastive objective. To enable mutual knowledge sharing among the textual and the structural modalities, we minimize the contrastive objective between a concept’s node representation and its textual embedding obtained via LM. We explore several state-of-the-art convolutional graph architectures, namely GraphSAGE and GAT, to learn relational information from local node neighborhood. After task-specific supervision, GEBERT achieves state-of-the-art results on five MCN datasets in English.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Andoree/GEBERT.

  2. 2.

    huggingface.co/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext.

References

  1. Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium, p. 17 (2001)

    Google Scholar 

  2. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3615–3620 (2019)

    Google Scholar 

  3. Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl_1), D267–D270 (2004)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  5. Chen, H., Chen, W., Liu, C., Zhang, L., Su, J., Zhou, X.: Relational network for knowledge discovery through heterogeneous biomedical and clinical features. Sci. Rep. 6(1), 29915 (2016)

    Article  Google Scholar 

  6. Dermouche, M., Looten, V., Flicoteaux, R., Chevret, S., Velcin, J., Taright, N.: ECSTRA-INSERM@ CLEF eHealth2016-task 2: ICD10 code extraction from death certificates. In: CLEF (2016)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)

    Google Scholar 

  8. Doğan, R.I., Leaman, R., Lu, Z.: NCBI disease corpus: a resource for disease name recognition and concept normalization. J. Biomed. Inform. 47, 1–10 (2014)

    Article  Google Scholar 

  9. Fiorini, N., et al.: Best match: new relevance search for PubMed. PLoS Biol. 16(8), e2005343 (2018)

    Article  Google Scholar 

  10. Gillick, D., Kulkarni, S., Lansing, L., Presta, A., Baldridge, J., Ie, E., Garcia-Olano, D.: Learning dense representations for entity retrieval. In: Proceedings of the 23rd Conference on Computational Natural Language Learning, pp. 528–537 (2019)

    Google Scholar 

  11. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  12. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthcare 3(1), 1–23 (2021)

    Article  Google Scholar 

  13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Lee, J., et al.: BioBERT: pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36, 1234–1240 (2019)

    Article  Google Scholar 

  15. Lee, S., et al.: Best: next-generation biomedical entity search tool for knowledge discovery from biomedical literature. PLoS ONE 11(10), e0164680 (2016)

    Article  Google Scholar 

  16. Li, J., et al.: BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database 2016 (2016)

    Google Scholar 

  17. Liu, F., Shareghi, E., Meng, Z., Basaldella, M., Collier, N.: Self-alignment pretraining for biomedical entity representations. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4228–4238 (2021)

    Google Scholar 

  18. Liu, F., Vulić, I., Korhonen, A., Collier, N.: Learning domain-specialised representations for cross-lingual biomedical entity linking. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, pp. 565–574 (2021)

    Google Scholar 

  19. Lou, Y., Qian, T., Li, F., Zhou, J., Ji, D., Cheng, M.: Investigating of disease name normalization using neural network and pre-training. IEEE Access 8, 85729–85739 (2020)

    Article  Google Scholar 

  20. Michalopoulos, G., Wang, Y., Kaka, H., Chen, H., Wong, A.: UmlsBERT: clinical domain knowledge augmentation of contextual embeddings using the unified medical language system metathesaurus. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1744–1753 (2021)

    Google Scholar 

  21. Miftahutdinov, Z., Alimova, I., Tutubalina, E.: On biomedical named entity recognition: experiments in interlingual transfer for clinical and social media texts. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 281–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_35

    Chapter  Google Scholar 

  22. Miftahutdinov, Z., Kadurin, A., Kudrin, R., Tutubalina, E.: Medical concept normalization in clinical trials with drug and disease representation learning. Bioinformatics 37(21), 3856–3864 (2021)

    Article  Google Scholar 

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  24. Mondal, I., et al.: Medical entity linking using triplet network, pp. 95–100 (2019)

    Google Scholar 

  25. Morgan, A.A., et al.: Overview of biocreative ii gene normalization. Genome Biol. 9(S2), S3 (2008)

    Article  Google Scholar 

  26. Niu, J., Yang, Y., Zhang, S., Sun, Z., Zhang, W.: Multi-task character-level attentional networks for medical concept normalization. Neural Process. Lett. 49, 1239–1256 (2019)

    Article  Google Scholar 

  27. Phan, M.C., Sun, A., Tay, Y.: Robust representation learning of biomedical names. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3275–3285 (2019)

    Google Scholar 

  28. Roberts, K., Demner-Fushman, D., Tonning, J.M.: Overview of the TAC 2017 adverse reaction extraction from drug labels track. In: TAC (2017)

    Google Scholar 

  29. Soni, S., Roberts, K.: An evaluation of two commercial deep learning-based information retrieval systems for COVID-19 literature. J. Am. Med. Inform. Assoc. 28(1), 132–137 (2021)

    Article  Google Scholar 

  30. Sung, M., Jeon, H., Lee, J., Kang, J.: Biomedical entity representations with synonym marginalization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3641–3650 (2020)

    Google Scholar 

  31. Sutton, R.T., Pincock, D., Baumgart, D.C., Sadowski, D.C., Fedorak, R.N., Kroeker, K.I.: An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit. Med. 3(1), 17 (2020)

    Article  Google Scholar 

  32. Tutubalina, E., Kadurin, A., Miftahutdinov, Z.: Fair evaluation in concept normalization: a large-scale comparative analysis for BERT-based models. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 6710–6716 (2020)

    Google Scholar 

  33. Van Mulligen, E., Afzal, Z., Akhondi, S.A., Vo, D., Kors, J.A.: Erasmus MC at CLEF eHealth 2016: concept recognition and coding in French texts. In: CLEF (2016)

    Google Scholar 

  34. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ. accepted as poster

  35. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5022–5030 (2019)

    Google Scholar 

  36. Yang, B., Yih, S.W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (ICLR) 2015 (2015)

    Google Scholar 

  37. Yuan, Z., Zhao, Z., Sun, H., Li, J., Wang, F., Yu, S.: CODER: knowledge-infused cross-lingual medical term embedding for term normalization. J. Biomed. Inform. 126, 103983 (2022)

    Article  Google Scholar 

  38. Zhu, M., Celikkaya, B., Bhatia, P., Reddy, C.K.: LATTE: latent type modeling for biomedical entity linking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 9757–9764 (2020)

    Google Scholar 

Download references

Acknowledgments

The work has been supported by the Russian Science Foundation grant # 23-11-00358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Sakhovskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakhovskiy, A., Semenova, N., Kadurin, A., Tutubalina, E. (2023). Graph-Enriched Biomedical Entity Representation Transformer. In: Arampatzis, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2023. Lecture Notes in Computer Science, vol 14163. Springer, Cham. https://doi.org/10.1007/978-3-031-42448-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42448-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42447-2

  • Online ISBN: 978-3-031-42448-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics