Skip to main content

Solid-State Nanopore Sensing Enhanced by Designed DNA Nanostructures

  • Chapter
  • First Online:
Solid State Nanopores

Part of the book series: Nanostructure Science and Technology ((NST))

  • 339 Accesses

Abstract

Solid-state nanopores are versatile single-molecule tools for label-free detection of biomolecules including DNA, RNA and protein by passing these molecules through nanopores using an applied electric potential. One of the main key challenges of solid-state nanopore in biosensing applications is their lack of specificity, as polymer chains with similar size and charge cause similar ionic current signals when they pass a nanopore. Thus, designed DNA nanostructures, named DNA carrier, which has specific binding sites that can selectively fish target molecules, were introduced to detect specific biomolecules such as protein and RNA. The DNA carrier attached with target protein generates a unique ionic current indicating the presence of the target and its location on the DNA carrier. Similarly, this system can be used to detect DNA sequence if functional protein molecules that can bind to specific DNA sequences are used to capture the DNA sequence. Moreover, the DNA carrier attached with DNA nanostructures has also find its way in the application as digital barcodes and for digital data storage. The use of DNA nanostructures significantly improves the specificity and versatility of solid-state nanopores in biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci 93:13770–13773

    Article  CAS  Google Scholar 

  2. Li J et al (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169

    Article  CAS  Google Scholar 

  3. Garaj S et al (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193

    Article  CAS  Google Scholar 

  4. Merchant CA et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921

    Article  CAS  Google Scholar 

  5. Schneider GF et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167

    Article  CAS  Google Scholar 

  6. Feng J et al (2015) Identification of single nucleotides in MoS2 nanopores. Nat Nanotechnol 10:1070–1076

    Article  CAS  Google Scholar 

  7. Keyser UF (2012) Nanopores–mission accomplished and what next? Phys Life Rev 2:164–166

    Article  Google Scholar 

  8. Ying Y-L et al (2022) Nanopore-based technologies beyond DNA sequencing. Nat Nanotechnol 17(11):1136–1146

    Google Scholar 

  9. Yusko EC et al (2017) Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat Nanotechnol 12:360–367

    Article  CAS  Google Scholar 

  10. Xue L et al (2020) Solid-state nanopore sensors. Nat Rev Mater 5:931–951

    Google Scholar 

  11. Bell NA, Keyser UF (2015) Specific protein detection using designed DNA carriers and nanopores. J Am Chem Soc 137:2035–2041

    Article  CAS  Google Scholar 

  12. Weckman NE et al (2019) Multiplexed DNA identification using site specific dCas9 barcodes and nanopore sensing. ACS Sens 4:2065–2072

    Article  CAS  Google Scholar 

  13. Bell NA, Keyser UF (2016) Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat Nanotechnol 11:645–651

    Article  CAS  Google Scholar 

  14. Plesa C et al (2016) Direct observation of DNA knots using a solid-state nanopore. Nat Nanotechnol 11:1093–1097

    Article  CAS  Google Scholar 

  15. Kumar Sharma R, Agrawal I, Dai L, Doyle PS, Garaj S (2019) Complex DNA knots detected with a nanopore sensor. Nat Commun 10:1–9

    Google Scholar 

  16. Lu B, Albertorio F, Hoogerheide DP, Golovchenko JA (2011) Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys J 101:70–79

    Article  CAS  Google Scholar 

  17. Plesa C, van Loo N, Ketterer P, Dietz H, Dekker C (2015) Velocity of DNA during translocation through a solid-state nanopore. Nano Lett 15:732–737

    Article  CAS  Google Scholar 

  18. Chen K et al (2021) Dynamics of driven polymer transport through a nanopore. Nat Phys 17:1043–1049

    Article  CAS  Google Scholar 

  19. Keyser UF (2016) Enhancing nanopore sensing with DNA nanotechnology. Nat Nanotechnol 11:106–108

    Article  CAS  Google Scholar 

  20. Kong J, Bell NA, Keyser UF (2016) Quantifying nanomolar protein concentrations using designed DNA carriers and solid-state nanopores. Nano Lett 16:3557–3562

    Article  CAS  Google Scholar 

  21. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  22. Sze JY, Ivanov AP, Cass AE, Edel JB (2017) Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  23. Kong J, Zhu J, Chen K, Keyser UF (2019) Specific biosensing using DNA aptamers and nanopores. Adv Funct Mater 29:1807555

    Article  Google Scholar 

  24. Singer A et al (2010) Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett 10:738–742

    Article  CAS  Google Scholar 

  25. Singer A, Rapireddy S, Ly DH, Meller A (2012) Electronic barcoding of a viral gene at the single-molecule level. Nano Lett 12:1722–1728

    Article  CAS  Google Scholar 

  26. Squires A, Atas E, Meller A (2015) Nanopore sensing of individual transcription factors bound to DNA. Sci Rep 5:11643

    Article  CAS  Google Scholar 

  27. Chen K et al (2017) Ionic current-based mapping of short sequence motifs in single DNA molecules using solid-state nanopores. Nano Lett 17:5199–5205

    Article  CAS  Google Scholar 

  28. Chen K, Gularek F, Liu B, Weinhold E, Keyser UF (2021) Electrical DNA sequence mapping using oligodeoxynucleotide labels and nanopores. ACS Nano 15:2679–2685

    Article  CAS  Google Scholar 

  29. Yang W et al (2018) Detection of CRISPR-dCas9 on DNA with solid-state nanopores. Nano Lett 18:6469–6474

    Article  CAS  Google Scholar 

  30. Davis J (1996) Microvenus. Art J 55:70–74

    Article  Google Scholar 

  31. Ceze L, Nivala J, Strauss K (2019) Molecular digital data storage using DNA. Nat Rev Genet 20:456–466

    Article  CAS  Google Scholar 

  32. Cao C et al (2020) Aerolysin nanopores decode digital information stored in tailored macromolecular analytes. Sci Adv 6:eabc2661

    Google Scholar 

  33. Chen K et al (2019) Digital data storage using DNA nanostructures and solid-state nanopores. Nano Lett 19:1210–1215

    Article  CAS  Google Scholar 

  34. Zhu J, Ermann N, Chen K, Keyser UF (2021) Image encoding using multi-level DNA barcodes with nanopore readout. Small 17:e2100711

    Article  Google Scholar 

  35. Chen K, Zhu J, Boskovic F, Keyser UF (2020) Nanopore-based DNA hard drives for rewritable and secure data storage. Nano Lett 20:3754–3760

    Article  CAS  Google Scholar 

  36. Bošković F, Ohmann A, Keyser UF, Chen K (2021) DNA structural barcode copying and random access. Small Struct 2:2000144

    Google Scholar 

  37. Church GM, Gao Y, Kosuri S (2012) Next-generation digital information storage in DNA. Science 337:1628–1628

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich F. Keyser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, K., Keyser, U.F. (2023). Solid-State Nanopore Sensing Enhanced by Designed DNA Nanostructures. In: Leburton, JP. (eds) Solid State Nanopores. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-42336-9_4

Download citation

Publish with us

Policies and ethics