Skip to main content

Fluid Modeling Through Navier–Stokes Equations and Numerical Methods

  • Chapter
  • First Online:
Deep Learning for Fluid Simulation and Animation

Abstract

Fluid dynamics is a field of physics that focuses on the study of the behavior of liquids and gases in motion. It explores the laws governing fluid movement and the forces they exert on objects they come into contact with. The motion of fluids is described by mathematical equations that consider factors such as velocity, pressure, and applied forces. These equations are based on the principles of mass and momentum conservation. This chapter introduces the Smoothed Particle Hydrodynamics (SPH) method and some variations of the traditional approach for simulating fluids. SPH is a Lagrangian method based on particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph., 31(4), Jul 2012.

    Google Scholar 

  2. B Ataie-Ashtiani and Leila Farhadi. A stable moving-particle semi-implicit method for free surface flows. Fluid Dynamics Research, 38(4):241, 2006.

    Google Scholar 

  3. Markus Becker and Matthias Teschner. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pages 209–217, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

    Google Scholar 

  4. Jan Bender. Splish Splash. https://github.com/InteractiveComputerGraphics/SPlisHSPlasH, 2022.

  5. Jan Bender and Dan Koschier. Divergence-free smoothed particle hydrodynamics. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA ’15, page 147–155. Association for Computing Machinery, 2015.

    Google Scholar 

  6. Jan Bender and Dan Koschier. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics, 23(3):1193–1206, 2017.

    Article  Google Scholar 

  7. Jan Bender, Tassilo Kugelstadt, Marcel Weiler, and Dan Koschier. Volume maps: An implicit boundary representation for SPH. In Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction and Games, pages 1–10, 2019.

    Google Scholar 

  8. J. Bonet and T.-S.L. Lok. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering, 180(1):97–115, 1999.

    Article  MathSciNet  Google Scholar 

  9. H.J. Butt, K. Graf, and M. Kappl. Physics and Chemistry of Interfaces. Wiley, 2006.

    Google Scholar 

  10. A.J. Chorin and J.E. Marsden. A Mathematical Introduction to Fluid Mechanics. Texts in Applied Mathematics. Springer New York, 2012.

    Google Scholar 

  11. Leandro Tavares da Silva. Simulação de Fluidos via Smoothed Particle Hydrodynamics: Formulação Variacional, Variação de Parâmetros e Extração de Características Visuais, 2016.

    Google Scholar 

  12. Leandro Tavares da Silva and Gilson Antonio Giraldi. Fixed point implementation of a variational time integrator approach for smoothed particle hydrodynamics simulation of fluids. Computers & Mathematics with Applications, 79(4):1111–1130, 2020.

    Google Scholar 

  13. S.R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics. Dover Books on Physics. Dover Publications. ISBN 9780486153506, https://books.google.com.br/books?id=mfFyG9jfaMYC

  14. R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3):375–389, 1977.

    Article  Google Scholar 

  15. M.E. Gurtin. An Introduction to Continuum Mechanics. ISSN. Elsevier Science, 1982.

    Google Scholar 

  16. C. Hirsch. Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization, volume 1. John Wiley & Sons, 1988.

    Google Scholar 

  17. Kyung Sung Kim, Moo Hyun Kim, and Jong-Chun Park. Development of moving particle simulation method for multiliquid-layer sloshing. Mathematical Problems in Engineering, page 13, 2014.

    Google Scholar 

  18. S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys., 231(4):1499–1523, February 2012.

    Article  MathSciNet  Google Scholar 

  19. G.R. Liu and B. Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003.

    Book  Google Scholar 

  20. A.A. Mohamad. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. SpringerLink : Bücher. Springer London, 2011.

    Google Scholar 

  21. J. J. Monaghan. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 30(1):543–574, 1992.

    Article  Google Scholar 

  22. J.J. Monaghan. Simulating free surface flows with SPH. Journal of Computational Physics, 110(2):399–406, 1994.

    Article  Google Scholar 

  23. J.J. Monaghan. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44(1):323–346, 2012.

    Article  MathSciNet  Google Scholar 

  24. J.J. Monaghan and R.A. Gingold. Shock simulation by the particle method SPH. Journal of Computational Physics, 52:374–384, 1983.

    Article  Google Scholar 

  25. Joseph P. Morris, Patrick J. Fox, and Yi Zhu. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys., 136(1):214–226, September 1997.

    Article  Google Scholar 

  26. P. Morris. Analysis of Smoothed Particle Hydrodynamics. PhD thesis, Monash University, 1996.

    Google Scholar 

  27. Matthias Müller, David Charypar, and Markus H. Gross. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation, 2003.

    Google Scholar 

  28. Afonso Paiva, Fabiano Petronetto, Thomas Lewiner, and Geovan Tavares. Simulação de Fluidos sem Malha: Uma Introdução ao Método SPH. IMPA, Rio de Janeiro, 2009. 27\({ }^{\circ }\) Colóquio Brasileiro de Matemática.

    Google Scholar 

  29. Jos Stam. Stable fluids. ACM SIGGRAPH 99, 1999, 11 2001.

    Google Scholar 

  30. K. Symon. Mechanics. Texts in Applied Mathematics. Addison-Wesley Publishing Company, 1971.

    Google Scholar 

  31. Jiyuan Tu, Kiao Inthavong, and Kelvin Kian Loong Wong. Computational Hemodynamics - Theory, Modelling and Applications. Springer, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonio Giraldi, G., Almeida, L.R.d., Lopes Apolinário Jr., A., Silva, L.T.d. (2023). Fluid Modeling Through Navier–Stokes Equations and Numerical Methods. In: Deep Learning for Fluid Simulation and Animation. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-031-42333-8_3

Download citation

Publish with us

Policies and ethics