Skip to main content

Fluids and Deep Learning: A Brief Review

  • Chapter
  • First Online:
Deep Learning for Fluid Simulation and Animation

Abstract

This chapter surveys deep learning models for fluid simulation and rendering. Regarding the former, we can group the works into small and large-scale fluid simulation, the interaction of the flow with other objects, and fluid control. Steered by this fact, we review works in turbulence, fluid solvers improvement, super-resolution, and generation of small-scale details for visual effects and video game applications. Also, applications of physics-based deep learning to produce fluid simulations with desirable behaviors for movies and the game industry are considered. Concerning rendering, we will highlight the most recent works applying machine learning techniques to generate photorealistic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvaro Abucide-Armas, Koldo Portal-Porras, Unai Fernández-Gámiz, Ekaitz Zulueta, and Adrián Teso-Fz-Betoño. A data augmentation-based technique for deep learning applied to CFD simulations. Mathematics, 2021.

    Google Scholar 

  2. Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering. AK Peters/CRC Press, 2019.

    Book  Google Scholar 

  3. Joshua Aurand, Raphael Ortiz, Silvia Nauer, and Vinicius C. Azevedo. Efficient Neural Style Transfer for Volumetric Simulations. ACM Transactions on Graphics, 41(6), 2022.

    Google Scholar 

  4. Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data-driven discretizations for partial differential equations. Proceedings of the National Academy of Sciences of the United States of America, 116:15344–15349, 2019.

    Article  MathSciNet  Google Scholar 

  5. Andrea Beck and Marius Kurz. A perspective on machine learning methods in turbulence modeling. GAMM Mitteilungen, 44(1):1–27, 2021.

    Article  MathSciNet  Google Scholar 

  6. J.U. Brackbill, D.B. Kothe, and H.M. Ruppel. Flip: A low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications, 48(1):25–38, 1988.

    Article  Google Scholar 

  7. Steven L. Brunton. Applying Machine Learning to Study Fluid Mechanics. Acta Mechanica Sinica, pages 1–15, 2021.

    Google Scholar 

  8. Steven L. Brunton, Maziar S. Hemati, and Kunihiko Taira. Special issue on machine learning and data-driven methods in fluid dynamics. Theoretical and Computational Fluid Dynamics, 34(4):333–337, 2020.

    Article  MathSciNet  Google Scholar 

  9. Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. Machine Learning for Fluid Mechanics. Annual Review of Fluid Mechanics, 52(1):477–508, 2020.

    Article  MathSciNet  Google Scholar 

  10. Qian Chen, Yue Wang, Hui Wang, and Xubo Yang. Data-driven simulation in fluids animation: A survey. Virtual Reality and Intelligent Hardware, 3(2):87–104, 2021.

    Article  Google Scholar 

  11. Chen Cheng and Guang-Tao Zhang. Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems. Water, 13, 02 2021.

    Article  Google Scholar 

  12. Fabienne Christen, Byungsoo Kim, Vinicius C. Azevedo, and Barbara Solenthaler. Neural Smoke Stylization with Color Transfer. arXiv preprint arXiv:1912.08757, pages 2–5, 2019.

    Google Scholar 

  13. Mengyu Chu, Nils Thuerey, Hans Peter Seidel, Christian Theobalt, and Rhaleb Zayer. Learning meaningful controls for fluids. ACM Transactions on Graphics, 40(4), 2021.

    Google Scholar 

  14. Mengyu Chu and Nils Thürey. Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Transactions on Graphics (TOG), 36:1–14, 2017.

    Article  Google Scholar 

  15. Felipe Orlandi de Oliveira and Afonso Paiva. Narrow-band screen-space fluid rendering. Computer Graphics Forum, 41, 2022.

    Google Scholar 

  16. Pandu Akbar Dwikatama, Dody Dharma, and Achmad I. Kistijantoro. Fluid simulation based on material point method with neural network. 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), pages 244–249, 2019.

    Google Scholar 

  17. Ben Frost, Alexey Stomakhin, and Hiroaki Narita. Moana: Performing water. In ACM SIGGRAPH 2017 Talks, SIGGRAPH ’17, New York, NY, USA, 2017. Association for Computing Machinery.

    Google Scholar 

  18. Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution reconstruction of turbulent flows with machine learning. Journal of Fluid Mechanics, 870:106–120, 2019.

    Article  MathSciNet  Google Scholar 

  19. Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576, 2015.

    Google Scholar 

  20. Tom M George, Georgy E. Manucharyan, and Andrew F. Thompson. Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence. Nature communications, 12 1:800, 2021.

    Google Scholar 

  21. Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Bennamoun. Deep learning for 3d point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:4338–4364, 2019.

    Google Scholar 

  22. Rana Hanocka and Hsueh-Ti Derek Liu. An introduction to deep learning on meshes. ACM SIGGRAPH 2021 Courses, 2021.

    Google Scholar 

  23. George Karniadakis, Yannis Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. Nature Reviews, pages 1–19, 05 2021.

    Google Scholar 

  24. Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. Transport-based neural style transfer for smoke simulations. ACM Transactions on Graphics, 38(6):1–11, 2019.

    Google Scholar 

  25. Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer graphics forum, volume 38, pages 59–70. Wiley Online Library, 2019.

    Google Scholar 

  26. Hyojin Kim, Junhyuk Kim, Sungjin Won, and Changhoon Lee. Unsupervised deep learning for super-resolution reconstruction of turbulence. Journal of Fluid Mechanics, 910, 2021.

    Google Scholar 

  27. Jiaqing Kou and Weiwei Zhang. Data-driven modeling for unsteady aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 2021.

    Google Scholar 

  28. J. Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4, 2017.

    Article  Google Scholar 

  29. Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155–166, 2016.

    Article  MathSciNet  Google Scholar 

  30. G.R. Liu and B. Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003.

    Book  Google Scholar 

  31. Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields. ArXiv, abs/2007.11571, 2020.

    Google Scholar 

  32. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. ArXiv, abs/2003.08934, 2020.

    Google Scholar 

  33. Arvind T. Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed convolutional LSTM: An efficient deep learning framework to model high fidelity 3d turbulence. arXiv: Fluid Dynamics, 2019.

    Google Scholar 

  34. Arvind T. Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embedding hard physical constraints in neural network coarse-graining of 3d turbulence, 2020.

    Google Scholar 

  35. Jeremy Morton, Antony Jameson, Mykel J. Kochenderfer, and Freddie D. Witherden. Deep dynamical modeling and control of unsteady fluid flows. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada, pages 9278–9288, 2018.

    Google Scholar 

  36. Matthias Müller, David Charypar, and Markus H. Gross. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation, 2003.

    Google Scholar 

  37. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. Monte Carlo methods for volumetric light transport simulation. In Computer Graphics Forum, volume 37, pages 551–576. Wiley Online Library, 2018.

    Google Scholar 

  38. Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From theory to implementation. The MIT Press, 4th edition edition, 2023.

    Google Scholar 

  39. Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade, and Nicolas Cerardi. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. Journal of Fluid Mechanics, 865:281–302, 2019.

    Article  MathSciNet  Google Scholar 

  40. Nikhila Ravi, Jeremy Reizenstein, David Novotný, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. SIGGRAPH Asia 2020 Courses, 2019.

    Google Scholar 

  41. Bruno Roy, Pierre Poulin, and Eric Paquette. Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent Resolution of Particle-Based Liquids. ACM Transactions on Graphics, 1(1):1–14, 2021.

    Google Scholar 

  42. Fabrizio Sarghini, Giuseppe de Felice, and Stefania Santini. Neural networks based subgrid scale modeling in large eddy simulations. Computers & Fluids, 32:97–108, 2003.

    Article  Google Scholar 

  43. Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. Example-based turbulence style transfer. ACM Transactions on Graphics (TOG), 37:1–9, 2018.

    Google Scholar 

  44. Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural networks. In Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto, editors, Proceedings of The 2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research, pages 317–335. PMLR, 29–31 Oct 2018.

    Google Scholar 

  45. Ben Stevens and Tim Colonius. Enhancement of shock-capturing methods via machine learning. Theoretical and Computational Fluid Dynamics, pages 1–14, 2020.

    Google Scholar 

  46. John C. Strikwerda. Finite difference methods for the stokes and navier–stokes equations. SIAM Journal on Scientific and Statistical Computing, 5(1):56–68, 1984.

    Article  MathSciNet  Google Scholar 

  47. Deborah Sulsky, Shi-Jian Zhou, and Howard L. Schreyer. Application of a particle-in-cell method to solid mechanics. Computer Physics Communications, 87(1):236–252, 1995. Particle Simulation Methods.

    Google Scholar 

  48. Roger Temam. Navier—Stokes Equations Theory and Numerical Analysis. Elsevier North Holland, 2 edition, 1979.

    Google Scholar 

  49. Nils Thuerey, Philipp Holl, Maximilian Müller, Patrick Schnell, Felix Trost, and Kiwon Um. Physics-based deep learning. CoRR, abs/2109.05237, 2021.

    Google Scholar 

  50. Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks. Computer Graphics Forum, 37(8):171–182, 2018.

    Article  Google Scholar 

  51. Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation with continuous convolutions. In International Conference on Learning Representations, 2019.

    Google Scholar 

  52. Ricardo Vinuesa and Steven L. Brunton. The Potential of Machine Learning to Enhance Computational Fluid Dynamics. Arxiv, pages 1–13, 2021.

    Google Scholar 

  53. Yifan Wang, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. Differentiable surface splatting for point-based geometry processing. ACM Transactions on Graphics (TOG), 38:1–14, 2019.

    Article  Google Scholar 

  54. Sebastian Weiss and Rüdiger Westermann. Differentiable direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, PP:1–1, 2021.

    Google Scholar 

  55. Gabriel D Weymouth. Data-driven multi-grid solver for accelerated pressure projection, 2021.

    Google Scholar 

  56. Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow. Computer Graphics Forum, 2019.

    Google Scholar 

  57. Wikipedia. Turbulence modeling. https://en.wikipedia.org/wiki/Turbulence_modeling, 2023.

  58. Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural Fields in Visual Computing and Beyond. Computer Graphics Forum, 41(2):641–676, 2022.

    Article  Google Scholar 

  59. You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. Tempogan: A temporally coherent, volumetric gan for super-resolution fluid flow. ACM Trans. Graph., 37(4), Jul 2018.

    Google Scholar 

  60. Cheng Yang, Xubo Yang, and Xiangyun Xiao. Data-driven projection method in fluid simulation. Computer Animation and Virtual Worlds, 27(3–4):415–424, 2016.

    Google Scholar 

  61. Allen Rowe York II. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions. The University of New Mexico, 1997.

    Book  Google Scholar 

  62. Matteo Zancanaro, Markus Mrosek, Giovanni Stabile, Carsten Othmer, and Gianluigi Rozza. Hybrid neural network reduced order modelling for turbulent flows with geometric parameters. Fluids, 6(8), 2021.

    Google Scholar 

  63. Linyang Zhu, Weiwei Zhang, Xuxiang Sun, Yilang Liu, and Xianxu Yuan. Turbulence closure for high reynolds number airfoil flows by deep neural networks. Aerospace Science and Technology, 110:106452, 2021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonio Giraldi, G., Almeida, L.R.d., Lopes Apolinário Jr., A., Silva, L.T.d. (2023). Fluids and Deep Learning: A Brief Review. In: Deep Learning for Fluid Simulation and Animation. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-031-42333-8_2

Download citation

Publish with us

Policies and ethics