Skip to main content

Introductory Material to Animation and Learning

  • Chapter
  • First Online:
Deep Learning for Fluid Simulation and Animation

Abstract

In this chapter, we introduce concepts in computer animation, starting with physics-based animation. We revise the main steps of the pipeline involved: (1) geometric modeling of the scene; (2) the physical model describing the dynamics and interaction of objects therein; (3) computer simulation of the model; (4) rendering. Then, machine learning concepts regarding training and learning taxonomy (supervised, unsupervised, semi-supervised, and reinforcement learning) are discussed, aiming to prepare the way to introduce the main goal of this work: fluid animation based on deep learning techniques, which is motivated by the universality of the computational model of neural networks besides the possibility of generating surrogate models with the capability of producing predictions faster than traditional approaches, from the knowledge gained in the training process. Finally, the organization of the following sections is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomas Akenine-Mölle and Naty Hoffman Eric Haine an. Real-Time Rendering. A K Peters/CRC Press, 3 edition, 2008.

    Google Scholar 

  2. Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

    Google Scholar 

  3. Steven L. Brunton, Maziar S. Hemati, and Kunihiko Taira. Special issue on machine learning and data-driven methods in fluid dynamics. Theoretical and Computational Fluid Dynamics, 34(4):333–337, 2020.

    Article  MathSciNet  Google Scholar 

  4. Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel, Patrick Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. The design and evolution of disney’s hyperion renderer. ACM Trans. Graph., 37(3), Jul 2018.

    Google Scholar 

  5. Chen Cheng and Guang-Tao Zhang. Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems. Water, 13, 02 2021.

    Article  Google Scholar 

  6. Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 51:357–377, 2019.

    Article  MathSciNet  Google Scholar 

  7. Ben Frost, Alexey Stomakhin, and Hiroaki Narita. Moana: Performing water. In ACM SIGGRAPH 2017 Talks, SIGGRAPH ’17, New York, NY, USA, 2017. Association for Computing Machinery.

    Google Scholar 

  8. Kai Fukami, Koji Fukagata, and Kunihiko Taira. Assessment of supervised machine learning methods for fluid flows. Theoretical and Computational Fluid Dynamics, 34(4):497–519, 2020.

    Article  MathSciNet  Google Scholar 

  9. Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Bennamoun. Deep learning for 3d point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:4338–4364, 2019.

    Google Scholar 

  10. Rana Hanocka and Hsueh-Ti Derek Liu. An introduction to deep learning on meshes. ACM SIGGRAPH 2021 Courses, 2021.

    Google Scholar 

  11. Simon Haykin. Neural Networks - A Comprehensive Foundation, Second Edition. Prentice Hall, 2 edition, 1998.

    Google Scholar 

  12. C. Hirsch. Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization, volume 1. John Wiley & Sons, 1988.

    Google Scholar 

  13. D. House and J.C. Keyser. Foundations of Physically Based Modeling and Animation. Taylor & Francis Group, 2020.

    Google Scholar 

  14. George Karniadakis, Yannis Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. Nature Reviews, pages 1–19, 05 2021.

    Google Scholar 

  15. Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon. Differentiable Rendering: A Survey. arXiv preprint arXiv:2006.12057, 14(8):1–20, 2020.

    Google Scholar 

  16. Timo Kellomäki. Fast water simulation methods for games. Comput. Entertain., 16(1), dec 2017.

    Google Scholar 

  17. Doyub Kim. Fluid Engine Development. A K Peters/CRC Press, 1st edition, 2017.

    Google Scholar 

  18. Kyung Sung Kim, Moo Hyun Kim, and Jong-Chun Park. Development of moving particle simulation method for multiliquid-layer sloshing. Mathematical Problems in Engineering, page 13, 2014.

    Google Scholar 

  19. G.R. Liu and B. Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003.

    Book  Google Scholar 

  20. Jia-Ming Lu, Xiao-Song Chen, Xiao Yan, Chen-Feng Li, Ming Lin, and Shi-Min Hu. A rigging-skinning scheme to control fluid simulation. Computer Graphics Forum, 38(7):501–512, 2019.

    Article  Google Scholar 

  21. Kevin P. Murphy. Machine learning: A Probabilistic Perspective. MIT Press, Cambridge, Mass. [U.A.], 2013.

    Google Scholar 

  22. Michael B. Nielsen and Robert Bridson. Spatially adaptive flip fluid simulations in bifrost. In ACM SIGGRAPH 2016 Talks, SIGGRAPH ’16, New York, NY, USA, 2016. Association for Computing Machinery.

    Google Scholar 

  23. Pixar. Pixar On-Line Library. http://graphics.pixar.com/library/, 2021.

  24. Amir H. Rabbani and Soufiane Khiat. Fast Eulerian Fluid Simulation In Games Using Poisson Filters. In Daniel Holden, editor, Eurographics/ ACM SIGGRAPH Symposium on Computer Animation - Showcases. The Eurographics Association, 2020.

    Google Scholar 

  25. Peter Sikachev, Martin Palko, and Alexandre Chekroun. Real-time fluid simulation in shadow of the tomb raider. Talk presented at the meeting of 4C Prague 2018, 2018.

    Google Scholar 

  26. Jos Stam. Stable fluids. ACM SIGGRAPH 99, 1999, 11 2001.

    Google Scholar 

  27. Anju Tewari, Otto Fried, Justus Thies, Vincent Sitzmann, S. Lombardi, Z Xu, Tanaba Simon, Matthias Nießner, Edgar Tretschk, L. Liu, Ben Mildenhall, Pranatharthi Srinivasan, R. Pandey, Sergio Orts-Escolano, S. Fanello, M. Guang Guo, Gordon Wetzstein, J y Zhu, Christian Theobalt, Manju Agrawala, Donald B. Goldman, and Michael Zollhöfer. Advances in neural rendering. Computer Graphics Forum, 41, 2021.

    Google Scholar 

  28. Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. Thin-film smoothed particle hydrodynamics fluid. ACM Transactions on Graphics (TOG), 40:1–16, 2021. https://api.semanticscholar.org/CorpusID:234741780.

    Google Scholar 

  29. Sebastian Weiss and Rüdiger Westermann. Differentiable direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, PP:1–1, 2021.

    Google Scholar 

  30. Mitchell Woodward, Yifeng Tian, Criston Hyett, Chris L. Fryer, Daniel Livescu, Mikhail Stepanov, and Michael Chertkov. Physics informed machine learning of SPH: Machine learning lagrangian turbulence. ArXiv, abs/2110.13311, 2021.

    Google Scholar 

  31. Shilin Zhu. Survey: Machine Learning in Production Rendering. arXiv preprint arXiv:2005.12518, 2, 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonio Giraldi, G., Almeida, L.R.d., Lopes Apolinário Jr., A., Silva, L.T.d. (2023). Introductory Material to Animation and Learning. In: Deep Learning for Fluid Simulation and Animation. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-031-42333-8_1

Download citation

Publish with us

Policies and ethics