Skip to main content

Through Space and Time: Spatio-Temporal Visualization of MOBA Matches

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Abstract

With data about in-game behavior becoming more easily accessible, data-driven tools and websites that allow players to review their performance have emerged. Among the many different visualizations used as part of these systems, spatio-temporal visualizations which do not rely on animations have received little attention. In this paper, we explore if the established space-time cube (STC) visualization is a suitable means for simultaneously conveying information about space and time to players. Towards this end, we have created a STC visualization for reviewing matches, focusing on Heroes of the Storm as a use case, and conducted a study among 30 Multiplayer Online Battle Arena (MOBA) players to establish how successfully various tasks can be performed and how this kind of 3D representation is received. Our results indicate that such a visualization, despite its complexity, can be usefully applied for match analysis if the design and interaction possibilities are well chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afonso, A.P., Carmo, M.B., Gonçalves, T., Vieira, P.: Visualeague: player performance analysis using spatial-temporal data. Multimed. Tools Appl. 78(23), 33069–33090 (2019)

    Article  Google Scholar 

  2. Agarwal, S., Wallner, G., Beck, F.: Bombalytics: visualization of competition and collaboration strategies of players in a bomb laying game. Comput. Graph. Forum 39(3), 89–100 (2020). https://doi.org/10.1111/cgf.13965

    Article  Google Scholar 

  3. Ahmad, S., Bryant, A., Kleinman, E., Teng, Z., Nguyen, T.H.D., Seif El-Nasr, M.: Modeling individual and team behavior through spatio-temporal analysis. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, pp. 601–612. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3311350.3347188

  4. Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: IEEE Symposium on Information Visualization, pp. 111–117 (2005). https://doi.org/10.1109/INFVIS.2005.1532136

  5. Amini, F., Rufiange, S., Hossain, Z., Ventura, Q., Irani, P., McGuffin, M.J.: The impact of interactivity on comprehending 2d and 3d visualizations of movement data. IEEE Trans. Visual Comput. Graphics 21(1), 122–135 (2015). https://doi.org/10.1109/TVCG.2014.2329308

    Article  Google Scholar 

  6. Andrienko, N., Andrienko, G., Gatalsky, P.: Exploratory spatio-temporal visualization: an analytical review. J. Visual Lang. Comput. 14(6), 503–541 (2003). https://doi.org/10.1016/S1045-926X(03)00046-6, visual Data Mining

  7. Barrett, B.: Heroes. ReplayParser (2020). https://github.com/barrett777/Heroes.ReplayParser. Accessed May 2023

  8. Blizzard Entertainment: Heroes of the Storm. Game [PC] (Juni: Blizzard Entertainment. Irvine, California, USA (2015)

    Google Scholar 

  9. Brower, G.M.: lil-gui (2022), https://github.com/georgealways/lil-gui Accessed: May, 2023

  10. Coulton, P., Bamford, W., Cheverst, K., Rashid, O.: 3d space-time visualization of player behaviour in pervasive location-based games. International Journal of Computer Games Technology 2008 (2008)

    Google Scholar 

  11. Dankoff, J.: Game telemetry with DNA tracking on assassin’s creed (2014). https://www.gamedeveloper.com/design/game-telemetry-with-dna-tracking-on-assassin-s-creed. Accessed May 2023

  12. Demšar, U., Virrantaus, K.: Space-time density of trajectories: exploring spatio-temporal patterns in movement data. Int. J. Geogr. Inf. Sci. 24(10), 1527–1542 (2010). https://doi.org/10.1080/13658816.2010.511223

    Article  Google Scholar 

  13. Dixit, P.N., Youngblood, G.M.: Understanding playtest data through visual data mining in interactive 3d environments. In: 12th International Conference on Computer Games: AI, Animation, Mobile, Interactive Multimedia and Serious Games, pp. 34–42 (2008)

    Google Scholar 

  14. Drachen, A., Canossa, A.: Analyzing spatial user behavior in computer games using geographic information systems. In: Proceedings of the 13th International MindTrek Conference: Everyday Life in the Ubiquitous Era, pp. 182–189. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1621841.1621875

  15. Drenikow, B., Mirza-Babaei, P.: Vixen: interactive visualization of gameplay experiences. In: Proceedings of the 12th International Conference on the Foundations of Digital Games. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3102071.3102089

  16. Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data: a study of New York city taxi trips. IEEE Trans. Visual Comput. Graphics 19(12), 2149–2158 (2013). https://doi.org/10.1109/TVCG.2013.226

    Article  Google Scholar 

  17. Filho, J.A.W., Stuerzlinger, W., Nedel, L.: Evaluating an immersive space-time cube geovisualization for intuitive trajectory data exploration. IEEE Trans. Visual Comput. Graphics 26(1), 514–524 (2020). https://doi.org/10.1109/TVCG.2019.2934415

    Article  Google Scholar 

  18. Gatalsky, P., Andrienko, N., Andrienko, G.: Interactive analysis of event data using space-time cube. In: Proceedings. Eighth International Conference on Information Visualisation, pp. 145–152. IEEE, Washington, DC (2004). https://doi.org/10.1109/IV.2004.1320137

  19. Gomez, S.R., Guo, H., Ziemkiewicz, C., Laidlaw, D.H.: An insight- and task-based methodology for evaluating spatiotemporal visual analytics. In: IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 63–72. IEEE, Washington, DC (2014). https://doi.org/10.1109/VAST.2014.7042482

  20. Gonçalves, T., Afonso, A.P., Martins, B.: Why not both? - combining 2D maps and 3D space-time cubes for human trajectory data visualization. In: Proceedings of the 30th International BCS Human Computer Interaction Conference, pp. 1–10. BCS Learning and Development Ltd., Swindon (2016). https://doi.org/10.14236/ewic/HCI2016.22

  21. Gonçalves, T., Vieira, P., Afonso, A.P., Carmo, M.B., Moucho, T.: Analysing player performance with animated maps. In: 22nd International Conference Information Visualisation (IV), pp. 103–109. IEEE, Washington, DC (2018). https://doi.org/10.1109/iV.2018.00028

  22. Hägerstrand, T.: What about people in regional science? In: European Congress of The Regional Science Association Copenhagen, vol. 69 (1970)

    Google Scholar 

  23. Harrower, M., Fabrikant, S.: The Role of Map Animation for Geographic Visualization, chap. 4, pp. 49–65. John Wiley & Sons, Ltd (2008). https://doi.org/10.1002/9780470987643.ch4

  24. Hoobler, N., Humphreys, G., Agrawala, M.: Visualizing competitive behaviors in multi-user virtual environments. In: IEEE Visualization 2004, pp. 163–170. IEEE, Washington, DC (2004). https://doi.org/10.1109/VISUAL.2004.120

  25. Huang, W., Eades, P., Hong, S.H.: Measuring effectiveness of graph visualizations: a cognitive load perspective. Inf. Vis. 8(3), 139–152 (2009). https://doi.org/10.1057/ivs.2009.10

    Article  Google Scholar 

  26. Jun, E., Landry, S., Salvendy, G.: Exploring the cognitive costs and benefits of using multiple-view visualisations. Behav. Inf. Technol. 32(8), 824–835 (2013). https://doi.org/10.1080/0144929X.2011.630420

    Article  Google Scholar 

  27. Kapler, T., Wright, W.: Geotime information visualization. Inf. Vis. 4(2), 136–146 (2005)

    Article  Google Scholar 

  28. Kepplinger, D., Wallner, G., Kriglstein, S., Lankes, M.: See, feel, move: Player behaviour analysis through combined visualization of gaze, emotions, and movement. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI 2020, pp. 1–14. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3313831.3376401

  29. Kessenich, J., Sellers, G., Shreiner, D.: OpenGL Programming Guide: The Official Guide to Learning OpenGL, 9th edn. Addison Wesley, Boston (2016)

    Google Scholar 

  30. Kleinman, E., El-Nasr, M.S.: Using data to “git gud”: a push for a player-centric approach to the use of data in esports (2021). https://doi.org/10.31219/osf.io/v3g79, oSF Preprints

  31. Kleinman, E., Preetham, N., Teng, Z., Bryant, A., Seif El-Nasr, M.: “What happened here!?” a taxonomy for user interaction with spatio-temporal game data visualization. Proc. ACM Hum.-Comput. Interact. 5(CHI PLAY), October 2021. https://doi.org/10.1145/3474687

  32. de Koning, R.: Visualization of Animal Behaviour Within the Space-Time Cube: A Transformation Framework to Improve Legibility. Master’s thesis, Wageningen University and Research Centre (2016). https://edepot.wur.nl/410205

  33. Kraak, M.J.: The space-time cube revisited from a geovisualization perspective. In: ICC 2003: Proceedings of the 21st International Cartographic Conference, pp. 1988–1996. International Cartographic Association, New Zealand (2003)

    Google Scholar 

  34. Kriglstein, S., Wallner, G., Pohl, M.: A user study of different gameplay visualizations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 361–370. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2556288.2557317

  35. Kristensson, P.O., Dahlback, N., Anundi, D., Bjornstad, M., Gillberg, H., Haraldsson, J., Martensson, I., Nordvall, M., Stahl, J.: An evaluation of space time cube representation of spatiotemporal patterns. IEEE Trans. Visual Comput. Graphics 15(4), 696–702 (2009). https://doi.org/10.1109/TVCG.2008.194

    Article  Google Scholar 

  36. Kuan, Y.T., Wang, Y.S., Chuang, J.H.: Visualizing real-time strategy games: the example of starcraft ii. In: 2017 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 71–80. IEEE, Washington, DC (2017). https://doi.org/10.1109/VAST.2017.8585594

  37. Kveladze, I., Kraak, M.J., Elzakker, C.P.V.: The space-time cube as part of a geovisual analytics environment to support the understanding of movement data. Int. J. Geogr. Inf. Sci. 29(11), 2001–2016 (2015). https://doi.org/10.1080/13658816.2015.1058386

    Article  Google Scholar 

  38. Li, W., Funk, M., Li, Q., Brombacher, A.: Visualizing event sequence game data to understand player’s skill growth through behavior complexity. J. Visualization 22(4), 833–850 (2019)

    Article  Google Scholar 

  39. Li, X., Çöltekin, A., Kraak, M.J.: Visual exploration of eye movement data using the space-time-cube. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) Geographic Information Science, pp. 295–309. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15300-6_21

  40. MacCormick, D., Zaman, L.: Echo: Analyzing Gameplay Sessions by Reconstructing Them From Recorded Data, pp. 281–293. Association for Computing Machinery, New York (2020)

    Google Scholar 

  41. Mayring, P.: Qualitative Content Analysis: Theoretical Background and Procedures, pp. 365–380. Springer, Netherlands (2015). https://doi.org/10.1007/978-94-017-9181-6_13

  42. Menno-Jan Kraak, I.K.: Narrative of the annotated space-time cube - revisiting a historical event. J. Maps 13(1), 56–61 (2017). https://doi.org/10.1080/17445647.2017.1323034

    Article  Google Scholar 

  43. Mirza-Babaei, P., Nacke, L.E., Gregory, J., Collins, N., Fitzpatrick, G.: How does it play better? exploring user testing and biometric storyboards in games user research. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1499–1508. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2470654.2466200

  44. Mo, C., et al.: An analysis of spatiotemporal pattern for coivd-19 in china based on space-time cube. J. Med. Virology 92, 1587–1595 (2020). https://doi.org/10.1002/jmv.25834

  45. Moore, A., Whigham, P., Holt, A., Aldridge, C., Hodge, K.: A time geography approach to the visualisation of sport. In: Proceedings of the 7th International Conference on GeoComputation. University of Southampton, Southampton, UK, May 2022

    Google Scholar 

  46. Peuquet, D.J.: It’s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Ann. Assoc. Am. Geogr. 84(3), 441–461 (1994). https://doi.org/10.1111/j.1467-8306.1994.tb01869.x

    Article  Google Scholar 

  47. Slingsby, A., van Loon, E.: Exploratory visual analysis for animal movement ecology. Comput. Graph. Forum 35(3), 471–480 (2016). https://doi.org/10.1111/cgf.12923

  48. three.js authors: ThreeJs (2022). https://github.com/mrdoob/three.js/. Accessed May (2023)

  49. Turchenko, M.: Space-Time Cube Visualization in a Mixed Reality Environment. Masterarbeit, Technische Universität München, 80333 München, September 2018

    Google Scholar 

  50. Tversky, B., Bauer Morrisony, J., Betrancourt, M.: Animation: can it facilitate? Int. J. Hum. Comput. Stud. 57(4), 247–262 (2002). https://doi.org/10.1006/ijhc.2002.1017

    Article  Google Scholar 

  51. Wallner, G., Halabi, N., Mirza-Babaei, P.: Aggregated visualization of playtesting data. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290605.3300593

  52. Wallner, G., Kriglstein, S.: A spatiotemporal visualization approach for the analysis of gameplay data. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1115–1124. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2207676.2208558

  53. Wallner, G., Kriglstein, S.: Visualization-based analysis of gameplay data - a review of literature. Entertainment Comput. 4(3), 143–155 (2013). https://doi.org/10.1016/j.entcom.2013.02.002

    Article  Google Scholar 

  54. Wallner, G., Kriglstein, S.: Multivariate visualization of game metrics: an evaluation of hexbin maps. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, pp. 572–584. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3410404.3414233

  55. Wallner, G., van Wijland, M., Bernhaupt, R., Kriglstein, S.: What players want: information needs of players on post-game visualizations. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI 2021. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3411764.3445174

  56. Yee, N.: Beyond 50/50: Breaking down the percentage of female gamers by genre (2017). https://quanticfoundry.com/2017/01/19/female-gamers-by-genre/. Accessed May 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Kriglstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šufliarsky, A., Walllner, G., Kriglstein, S. (2023). Through Space and Time: Spatio-Temporal Visualization of MOBA Matches. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42283-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42282-9

  • Online ISBN: 978-3-031-42283-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics