Skip to main content

Using Colour and Brightness for Sound Zone Feedback

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Abstract

We investigate the use of colour and brightness for feedback from sound zone systems. User interaction with sound zones suffer from them being invisible. Hence, spatial properties such as volume, size, and overlaps need to be represented through, e.g., light. Two studies were conducted. In the first study (N \(=\) 27), participants experienced different colour and brightness values shown on an LED strip attached to a volume controller and related those to sound zone volume, size, and overlaps. In the second study (N \(=\) 36), participants created an overlap between two sound zones by turning up the volume, triggering 12 animated light patterns. Our findings show that brightness reflects well the size of a sound zone, and that instant patterns are better indicators of overlaps compared to gradual patterns. These contributions are useful for designing sound zone visualisations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baraka, K., Rosenthal, S., Veloso, M.: Enhancing human understanding of a mobile robot’s state and actions using expressive lights. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 652–657. IEEE (2016)

    Google Scholar 

  2. Bastian, M., Heymann, S.: Diseasome: the human disease network. In: Börner, K. (ed.) Atlas of Knowledge: Anyone Can Map, pp. 128–129. The MIT Press (2015)

    Google Scholar 

  3. Betlehem, T., Zhang, W., Poletti, M.A., Abhayapala, T.D.: Personal sound zones: delivering interface-free audio to multiple listeners. IEEE Signal Process. Mag. 32(2), 81–91 (2015)

    Article  Google Scholar 

  4. Bullock, J., Michailidis, T., Poyade, M.: Towards a live interface for direct manipulation of spatial audio. In: Proceedings of the International Conference on Live Interfaces. REFRAME Books Sussex (2016)

    Google Scholar 

  5. Cairns, P.: Doing Better Statistics in Human-Computer Interaction. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  6. Cheer, J., Elliott, S.J., Gálvez, M.F.S.: Design and implementation of a car cabin personal audio system. J. Audio Eng. Soc. 61(6), 412–424 (2013)

    Google Scholar 

  7. Choi, J.-W., Kim, Y.-H.: Generation of an acoustically bright zone with an illuminated region using multiple sources. J. Acoust. Soc. Am. 111(4), 1695–1700 (2002)

    Article  Google Scholar 

  8. Clarke, V., Braun, V., Hayfield, N.: Thematic analysis. In: Qualitative Psychology: A Practical Guide to Research Methods, pp. 222–248 (2015)

    Google Scholar 

  9. Corney, D., Haynes, J.-D., Rees, G., Lotto, R.B.: The brightness of colour. PloS one 4(3), e5091 (2009)

    Article  Google Scholar 

  10. Fairchild, M.D.: Color Appearance Models. Wiley, Milton (2013)

    Google Scholar 

  11. Finstad, K.: Response interpolation and scale sensitivity: evidence against 5-point scales. J. Usability Stud. 5(3), 104–110 (2010)

    Google Scholar 

  12. Geier, M., Spors, S., Weinzierl, S.: The future of audio reproduction. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 1–17. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14758-6_1

    Chapter  Google Scholar 

  13. Graves, A., Hand, C., Hugill, A.: MidiVisualiser: interactive music visualisation using VRML. Organised Sound 4(1), 15–23 (1999)

    Article  Google Scholar 

  14. Harrison, C., Horstman, J., Hsieh, G., Hudson, S.: Unlocking the expressivity of point lights. In: Proceedings of the 2012 CHI Conference on Human Factors in Computing Systems, pp. 1683–1692. ACM (2012)

    Google Scholar 

  15. Hazlewood, W.R., Stolterman, E., Connelly, K.: Issues in evaluating ambient displays in the wild: two case studies. In: Proceedings of the 2011 CHI Conference on Human Factors in Computing Systems. ACM (2011)

    Google Scholar 

  16. Lima, H.B., Dos Santos, C.G.R., Meiguins, B.S.: A survey of music visualization techniques. ACM Comput. Surv. 54(7), 1–29 (2021)

    Google Scholar 

  17. Jacobsen, R.M., van Berkel, N., Skov, M.B., Johansen, S.S., Kjeldskov, J.: Do you see what i hear? - Peripheral absolute and relational visualisation techniques for sound zones. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA. ACM (2022). https://doi.org/10.1145/3491102.3501938

  18. Johansen, S.S., Merritt, T., Jacobsen, R.M., Nielsen, P.A., Kjeldskov, J.: Investigating potentials of shape-changing displays for sound zones. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA. ACM (2022). https://doi.org/10.1145/3491102.3517632

  19. Kunchay, S., Wang, S., Abdullah, S.: Investigating users’ perceptions of light behaviors in smart-speakers. In: Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing, pp. 262–266. ACM (2019)

    Google Scholar 

  20. Wänström Lindh, U., Billger, M., Aries, M.: Experience of spaciousness and enclosure: Distribution of light in spatial complexity. J. Sustain. Des. Appl. Res. 8(1), 5 (2020)

    Google Scholar 

  21. Löffler, D., Arlt, L., Toriizuka, T., Tscharn, R., Hurtienne, J.: Substituting color for haptic attributes in conceptual metaphors for tangible interaction design. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 118–125. ACM (2016)

    Google Scholar 

  22. Lundgaard, S.S., Nielsen, P.A.: Personalised soundscapes in homes. In: Proceedings of the 2019 on Designing Interactive Systems Conference, pp. 813–822. ACM (2019)

    Google Scholar 

  23. Lundgaard, S.S., Nielsen, P.A., Kjeldskov, J.: Designing for domestic sound zone interaction. Pers. Ubiquitous Comput., 1–2 (2020)

    Google Scholar 

  24. Matusiak, B.: The impact of lighting/daylighting and reflectances on the size impression of the room. Full-scale studies. Archit. Sci. Rev. 47(2), 115–119 (2004)

    Article  MathSciNet  Google Scholar 

  25. Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)

    Google Scholar 

  26. Stévens, J.C., Hall, J.W.: Brightness and loudness as functions of stimulus duration. Percept. Psychophys. 1, 319–327 (1966)

    Article  Google Scholar 

  27. McGregor, I., Turner, P., Benyon, D.: Using participatory visualisation of soundscapes to compare designers’ and listeners’ experiences of sound designs. J. Sonic Stud. 6(1) (2014)

    Google Scholar 

  28. Radojevic, M.D., Turner, R.: Spatial forms generated by music-the case study. In: International Conference on Generative Art, pp. 1–11. CumInCAD (2002)

    Google Scholar 

  29. Rämö, J., Christensen, L., Bech, S., Jensen, S.: Validating a perceptual distraction model using a personal two-zone sound system. Proc. Meetings Acoust. 30(1), 050003 (2017)

    Article  Google Scholar 

  30. Riecke, B.E., Feuereissen, D., Rieser, J.J., McNamara, T.P.: Spatialized sound enhances biomechanically-induced self-motion illusion (Vection). In: Proceedings of the 2011 CHI Conference on Human Factors in Computing Systems. ACM (2011). https://doi.org/10.1145/1978942.1979356

  31. Waves: See Your Own Sound Waves. http://rombout.design/openlight/. www.openlight.nl/waves.html. Accessed 14 Jan 2023

  32. Walker, P., Francis, B.J., Walker, L.: The brightness-weight illusion. Experimental Psychology (2010)

    Google Scholar 

  33. Walker, L., Karl, C.A.: The hospital (Not So) quiet zone: creating an environment for patient satisfaction through noise reduction strategies. HERD Health Environ. Res. Des. J. 12(4), 197–202 (2019)

    Google Scholar 

  34. Wang, M., Lyckvi, S.L., Chen, C., Dahlstedt, P., Chen, F.: Using advisory 3D sound cues to improve drivers’ performance and situation awareness. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM (2017)

    Google Scholar 

  35. Warden, C.J., Flynn, E.L.: The effect of color on apparent size and weight. Am. J. Psychol. 37(3), 398–401 (1926)

    Article  Google Scholar 

  36. Waves - See your own sound waves. http://rombout.design/openlight/. www.openlight.nl/waves.html. Accessed 14 Jan 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stine S. Johansen .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

See Figs. 5 and 6.

Fig. 5.
figure 5

Top: Participant ratings on colour settings for sound zone volume. Bottom: Participant ratings on colour settings for sound zone size.

Fig. 6.
figure 6

Left: Participant ratings on brightness settings for sound zone volume. Right: Participant ratings on brightness settings for sound zone size.

Appendix 2

Fig. 7.
figure 7

This figure shows the performance of each individual pattern in comparison to the other patterns according to each of the six statements investigated. Dark blue: The pattern in the column performed significantly better than the pattern in the row (p < 0.05). Yellow: The pattern in the row performed significantly better than the pattern in the column (p < 0.05). Green: No statistically significant difference found. (Color figure online)

Appendix 3

See Figs. 8, 9 and 10.

Fig. 8.
figure 8

Top: Participants’ responses to the statement “The sound zones are overlapping”. Bottom: Participants’ responses to the statement “I should adjust the volume of my sound zone”.

Fig. 9.
figure 9

Top: Participants’ responses to the statement “The person in the other sound zone can hear my music”. Bottom: Participants’ responses to the statement “I am being warned”.

Fig. 10.
figure 10

Top: Participants’ responses to the statement “My sound zone is increasing in size”. Bottom: Participants’ responses to the statement “The other sound zone is decreasing in size”.

Appendix 4

The following supplementary materials can be located here:

https://www.dropbox.com/sh/poc15eypbnvl0af/AAAhO5jnWsMJLIEw0kt6DIX8a?dl=0

  • Data from Likert-item responses in Study 2

  • Video figure that shows the experimental setup and the light patterns used in Study 2

  • Questionnaires used in Study 1, including (1) for brightness settings and (2) for colour settings

  • Likert-item questionnaire used in Study 2

  • Information sheets handed out to participants in both studies

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johansen, S.S., Nielsen, P.A., Stec, K., Kjeldskov, J. (2023). Using Colour and Brightness for Sound Zone Feedback. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14142. Springer, Cham. https://doi.org/10.1007/978-3-031-42280-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42280-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42279-9

  • Online ISBN: 978-3-031-42280-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics