Skip to main content

Optimized Reversible Cellular Automata Based Clustering

  • Conference paper
  • First Online:
Cellular Automata and Discrete Complex Systems (AUTOMATA 2023)

Abstract

The research optimizes reversible cellular automata based clustering technique for any high dimensional dataset. The reversible rules are characterized using the cycle structure properties of each rule to identify effective rules for clustering. This essentially reduces the rule search space for a given neighborhood size. A novel encoding technique (BiNCE Encoding) that encodes any dataset into binary form without significant data loss is also introduced for our algorithm. Finally, the algorithm and implementation is transformed into a package which is applicable on various datasets, split sizes and cluster sizes for ease of accessibility and reproducibility. While compared against the state-of-the-art methods using benchmark clustering metrics, it is shown that our algorithm is at par or beating the scores for certain datasets and settings.

This work is partially supported by Start-up Research Grant (File number: SRG/2022/002098), SERB, Govt. of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Henceforth in this article, RCA will refer to a 1-dimensional 5-neighborhood binary reversible cellular automaton having null boundary conditions.

  2. 2.

    The split size has no relation with the dataset size and is related to the computational time. The value of \(split\_size\) can remain the same for larger datasets resulting in a larger number of splits which can be run in parallel.

  3. 3.

    GitHub repository: https://github.com/Viswonathan06/Reversible-Cellular-Automata-Clustering.

References

  1. Mukherjee, S., Bhattacharjee, K., Das, S.: Reversible cellular automata: a natural clustering technique. J. Cell. Autom. 16, 1–38 (2021)

    MathSciNet  Google Scholar 

  2. Mukherjee, S., Bhattacharjee, K., Das, S.: Clustering using cyclic spaces of reversible cellular automata. Complex Syst. 30, 205–237 (2021). https://doi.org/10.25088/ComplexSystems.30.2.205

    Article  MATH  Google Scholar 

  3. Bhattacharjee, K., Abhishek, S., Dharwish, M., Das, A.: A cellular automata-based clustering technique for high-dimensional data. In: Das, S., Martinez, G.J. (eds.) ASCAT 2023, pp. 37–51. Springer, Cham (2023). https://doi.org/10.1007/978-981-99-0688-8_4

    Chapter  Google Scholar 

  4. He, H., Tan, Y.: Automatic pattern recognition of ECG signals using entropy-based adaptive dimensionality reduction and clustering. Appl. Soft Comput. 55, 238–252 (2017). https://doi.org/10.1016/j.asoc.2017.02.001

    Article  Google Scholar 

  5. Negadi, T.: The genetic code via Godel encoding: arXiv preprint arXiv:0805.0695 (2008)

  6. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_28

    Chapter  Google Scholar 

  7. Trejos, J., Murillo, A., Piza, E.: Clustering by ant colony optimization. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation, pp. 25–32. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-17103-1_3

    Chapter  Google Scholar 

  8. Wan, M., Xiao, J., Wang, C., Yang, Y.: Data clustering using bacterial foraging optimization. J. Intell. Inf. Syst. JIIS 38, 321–341 (2011). https://doi.org/10.1007/s10844-011-0158-3

    Article  Google Scholar 

  9. Kumar, N., Abraham, A., Pant, M.: Biological and Swarm Intelligence-Based Clustering Algorithms: A Comprehensive Survey and Analysis (2017)

    Google Scholar 

  10. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33, 1455–1465 (2000). https://doi.org/10.1016/S0031-3203(99)00137-5

    Article  Google Scholar 

  11. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  12. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979). https://doi.org/10.1109/TPAMI.1979.4766909

  13. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974). https://doi.org/10.1080/03610927408827101

    Article  MathSciNet  MATH  Google Scholar 

  14. Shah, A.: Credit Card Customer Data. https://www.kaggle.com/datasets/aryashah2k/credit-card-customer-data

  15. Fisher, R.A.: IRIS. UCI Machine Learning Repository (1988). https://doi.org/10.24432/C56C76

  16. Dataworldadmin, School District Breakdowns - dataset by city-of-ny | data.world. https://data.world/city-of-ny/g3vh-kbnw

  17. Mahimkar, A.: Customer Segmentation. https://www.kaggle.com/code/adityamahimkar/customer-segmentation/input?select=segmentation+data.csv

  18. Larxel, Heart Failure Prediction. https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data

  19. Aeberhard, S., Forina, M.: Wine. UCI Machine Learning Repository (1991). https://doi.org/10.24432/C5PC7J

  20. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning Proceedings 1995, pp. 194–202. Morgan Kaufmann (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalika Bhattacharjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manoranjan, V., Sneha Rao, G., Vaidhianathan, S.V., Bhattacharjee, K. (2023). Optimized Reversible Cellular Automata Based Clustering. In: Manzoni, L., Mariot, L., Roy Chowdhury, D. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2023. Lecture Notes in Computer Science, vol 14152. Springer, Cham. https://doi.org/10.1007/978-3-031-42250-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42250-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42249-2

  • Online ISBN: 978-3-031-42250-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics