Skip to main content

Brain Computer Interface in Neurology: The Future of Neurorestoration, the Possibilities and Perils. A Narrative Review

  • Conference paper
  • First Online:
Advances in Biomedical and Veterinary Engineering (BioMedVetMech 2022)

Abstract

Neurological diseases often leave a devastating effect on the quality of life of patients, and their caregivers. Usually, when people are healthy, communication and movement are taken for granted. Unfortunately when disease or trauma happens a disconnection from these basic aspects of life leaves a person stranded with current options still limited in alleviating these devastating situations. That is where Brain-Computer Interfaces come into play, as a novel way of replacing, and treating neurological diseases and injuries. Using advanced computer technologies direct brain activity can be used to issue commands through a computer or a replacement limb, wheelchair, or exoskeleton. Not only replacement but also neuromodulation and neurorehabilitation by way of BCI provide new ways of treating diseases with functional connectivity issues. More and more research is proving its usability, with awe-inspiring prospects for the future treatment of neurological diseases. But as with any technological novelty thorough discussion, and general informing of both the patients and clinicians is needed so as to prevent future worries and disappointment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vidal, J.J.: Toward direct brain – computer communication. Annu. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)

    Article  Google Scholar 

  2. Li, C., Zhao, W.: Progress in the brain – computer interface: an interview with Bin He. Natl. Sci. Rev. 7, 480–483 (2020)

    Article  Google Scholar 

  3. He, B., Yuan, H., Meng, J., Gao, S.: Brain – computer interfaces. In: He, B. (eds): Neural engineering. Third edition, pp. 131–183. Springer Nature, Cham, Switzerland (2020)

    Google Scholar 

  4. Akinin, A., Akshkay, P., Wang, J., Buccino, A., Cauwenberghs, G.: Biopotential measurements and electrodes. In: He, B. (eds.) Neural engineering. Third edition, p. 65–96. Springer Nature, Cham, Switzerland (2020)

    Google Scholar 

  5. Fazel-Rezai, R., Allison, B.Z., Guger, C., Sellers, E.W., Kleih, S.C., Kübler, A.: P300 brain computer interface: current challenges and emerging trends. Frontiers in Neuroengineering 5, 1–14 (2012)

    Article  Google Scholar 

  6. Minkyu, A., Sung, C.J.: Performance variation in motor imagery brain–computer interface: a brief review. J. Neurosci. Methods 243, 103–110 (2015)

    Article  Google Scholar 

  7. Naseer, N., Hong, K.-S.: fNIRS – based brain – computer interfaces: a review. Front. Hum. Neurosci. 9(3), 1–14 (2015)

    Google Scholar 

  8. Weiskopf, N., et al.: Principles of a brain – computer interface (bci) based on real – time functional magnetic resonance imaging (fMRI). IEEE Trans. Miodecial Eng. 51(6), 966–970 (2004)

    Article  Google Scholar 

  9. Burns, A., Adeli, H., Buford, A.J.: Brain-computer interface after nervous system injury. Neuroscientist 20(6), 1–13 (2014)

    Article  Google Scholar 

  10. Oby, R.E., Hennig, J.A., Batista, A.P., Yu, B.M., Chase, S.M.: Intracortical brain – machine interfaces. In: He, B. (eds). Neural engineering. Third edition, pp. 185–221. Springer Nature, Cham, Switzerland (2020)

    Google Scholar 

  11. Nierhaus, T., Vidaurre, C., Sannelli, C., Mueller, K.-R., Villringer, A.: Immediate brain plasticity after one hour of brain – computer interface (BCI). J Physiol 599, 2435–2451 (2021)

    Article  Google Scholar 

  12. Kübler, A., Kotchoubey, B.: Brain–computer interfaces in the continuum of consciousness. Curr Opin Neurol 20(6), 643–649 (2007)

    Article  Google Scholar 

  13. Müller-Putz, G.R., Pokorny, C., Klobassa, D.S., Horki, P.: A single-switch BCI based on passive and imagined movements: Toward restoring communication in minimally conscious patients. Int J Neural Syst 23(2), 1250037

    Google Scholar 

  14. Eliseyev, A., et al.: Development of a brain-computer interface for patients in the critical care setting. PLoS ONE 16(1), 1–13 (2021)

    Article  Google Scholar 

  15. Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials. Electroencephalogr. Clin. Neurophysiol 70(6), 510–523 (1988)

    Article  Google Scholar 

  16. Townsend, G., et al.: A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin. Neurophysiol. 121(7), 1109–1120 (2010)

    Article  Google Scholar 

  17. Marchetti, M., Piccione, F., Silvoni, S., Gamberini, L., Priftis, K.: Covert visuospatial attention orienting in a brain-computer inteface for amyotrophic lateral slerosis patients. Neurorehabil. Neural Repair 27(5), 430–438 (2013)

    Article  Google Scholar 

  18. Münßinger, J.I., et al.: Brain Painting: first evaluation of a new brain – computer interface application with ALS-patients and healthy volunteers. Front. Neurosci. 4, 1–11 (2010)

    Article  Google Scholar 

  19. Utsumi, K., Takano, K., Okahara, Y., Komori, T., Onodera, O., Kaansaku, K.: Operation of a P300-based brain-computer interface in patients with Duchenne muscular dystrophy. Sci Rep 8, 1753 (2018)

    Article  Google Scholar 

  20. Willet, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., Shenoy, K.V.: High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021)

    Article  Google Scholar 

  21. Simeral, J.D., Hosman, T., Saab, J., Flesher, S.N., Vilela, M., Franco, B., et al.: Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Trans. Biomedical Eng. 68(7), 2313–2325 (2021)

    Google Scholar 

  22. Oxley, T.J., Yoo, P.E., Rind, G.S., Ronayne, S.M., Lee, C.M.S., Bird, C., et al.: Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J. NeuroInterventional Surgery 13(2), 102–108 (2020)

    Article  Google Scholar 

  23. Li, J., Liang, J., Zhao, Q., Li, J., Hong, K., Zhang, L.: Design of assistive wheelchair system directly steered by human thoughts. Int. J. Neural Syst. 23(3), 1350013 (2013)

    Article  Google Scholar 

  24. Li, J., et al.: Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom. Int. J. Neural Syst. 24(4), 1450014 (2014)

    Article  Google Scholar 

  25. Li, Y., Pan, J., Wang, F., Zhuliang, Y.: A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng. 60(11), 3156–3166 (2013)

    Article  Google Scholar 

  26. Tang, J., Liu, Y., Hu, D., Zhou, Z.: Towards BCI-actuated smart wheelchair system. Biomed. Eng. Online 17, 1–22 (2018)

    Article  Google Scholar 

  27. Benabid, A.L., Costecalde, T., Eliseyev, A., Charvet G., Verney, A., Karakas, S., et al.: An exoskeleton controlled by an apidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol 18(12), 1112–1122 (2019)

    Google Scholar 

  28. Zhu, Y., Li, Y., Lu, J., Li, P.: A hybrid BCI based on SSVEP and EOG for robotic arm control. Front. Neurorobot. 14, 583641 (2020)

    Article  Google Scholar 

  29. Young, M.J., Lin, D.J., Hochberg, L.R.: Brain-computer interfaces in neurorecovery and neurorehabilitation. Semin Neurol 41(02), 206–216 (2021)

    Article  Google Scholar 

  30. Garro, F., Chiappalone, M., Bucelli, S., De Michieli, L., Semprini, M.: Neuromechanical biomarkers for robotic neurorehabilitation. Front Neurorobot. 15, 742163 (2021)

    Article  Google Scholar 

  31. Lo, A.C., Guarino, P., Krebs, H.I., Volpe, B.T., Bever, C.T., Duncan, P.W., et al.: Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for VA ROBOTICS. Neurorehabil. Neural Repair 23(8), 775–783 (2009)

    Article  Google Scholar 

  32. Frolov, A.A., Husek, D., Silchenko, A.,V., Tintera, J., Rydlo, J.: The changes in the hemodynamic activity of the brain during motor imagery training with the use of brain-computer interface. Human Physiology 42, 1–12 (2016)

    Google Scholar 

  33. Jeannerod, M.: The representing brain: neural correlates of motor intention and imagery. Behavioral and Brain Sci. 17(2), 187–202 (1994)

    Article  Google Scholar 

  34. Frolov, A.A., Húsek, D. , Biryukova, E.V., Bobrov, P.D., Mokienko, O.A., Alexandrov, A.V.: Principles of motor recovery in post-stroke patients using hand exoskeleton controlled by the brain-computer interface based on motor imagery. Neural Network World 27(1), 107–137 (2017)

    Google Scholar 

  35. Hebb, D.O.: The Organization of Behavior. Wiley, New York USA (1949)

    Google Scholar 

  36. Mokienko, O.A., Lyukmanov, R.K., Chernikova, L.A., Suponeva, N.A., Piradov, M.A., Frolov, A.A.: Brain-computer interface: the first experience of clinical use in Russia. Human Physiology 42(1), 24–31 (2016)

    Google Scholar 

  37. Baniqued P.D.E., Stanyer, E.C., Awais, M., Alazmani, A., Jackson, A.E., Mon-Williams, M.A. et al.: Brain-computer interface robotics for hand rehabilitation after stroke: a systemic review. J NeuroEngineering Rehabil 18(15), 1–25 (2021)

    Google Scholar 

  38. Gunduz, A.: Deep brain stimulation: emerging technologies and applications. In: He, B. (eds.) Neural engineering. Third edition, pp. 223–243. Springer Nature, Cham, Switzerland (2020)

    Google Scholar 

  39. Carelli, L., Solca, F., Faini, A., Meriggi, P., Sangalli, D., Cipresso, P., et al.: Brain-computer interface for clinical purposes: cognitive assessment and rehabilitation. Biomed. Res. Int. 2017(1695290), 1–11 (2017)

    Article  Google Scholar 

  40. Buch, V.P., Richardson, A.G., Brandon, C., Stiso, J., Khattak, M.N., Basset, D.S. et al.: Nerwork brain-computer interface (nBCI): an alterrnative approach for cognitive prosthetics. Frontiers in Neuroscience 12, 1–9 (2018)

    Google Scholar 

  41. Alkawadri, R.: Brain-computer interface (BCI) applications in mapping of epileptic brain networks based on intracranial-EEG: an update. Front. Neurosci 13, 1–13 (2019)

    Article  Google Scholar 

  42. Simonyan, K., Ehrlich, S.K., Andersen, R., Brumberg, J., Guenther, F., Hallet, M., et al.: Brain-computer interfaces for treatment of focal dystonia. Mov. Disord. 37(9), 1798–1802 (2022)

    Article  Google Scholar 

  43. McCullagh, P., Lightbody, G., Zygierewicz, J., Kernohan, W.G.: Ethical challenges associated with the development and deployment of brain computer interface technology. Neuroethics 7(2), 109–122 (2013)

    Article  Google Scholar 

  44. Klein, E.: Ethics and the emergence of brain-computer interface medicine. In: Ramsey, N.F., Millán, J.R. (eds). Handbook of clinical neurology, 168, pp. 329–339, Elsevier (2020)

    Google Scholar 

  45. Musk, E.: An integrated brain-machine interface platform with thousands of channels. J Med Internet Res 22(10), e16194 (2019)

    Article  Google Scholar 

  46. Lesaja, S., Palmer, X.L.: Brain-Computer Interfaces and the Dangers of Neurocapitalism. arXiv preprint 2009.07951, pp. 1–15 (2020)

    Google Scholar 

  47. Ienca, M., Haselager, P.: Hacking the brain: brain-computer interfacing technology and the ethics of neurosecurity. Ethics Inf. Technol. 18(2), 117–129 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slaven Lasić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lasić, S., Đerke, F., Bašić, S., Demarin, V. (2024). Brain Computer Interface in Neurology: The Future of Neurorestoration, the Possibilities and Perils. A Narrative Review. In: Bonačić Bartolin, P., Magjarević, R., Allen, M., Sutcliffe, M. (eds) Advances in Biomedical and Veterinary Engineering. BioMedVetMech 2022. IFMBE Proceedings, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-031-42243-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42243-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42242-3

  • Online ISBN: 978-3-031-42243-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics