Skip to main content

Abstract

This work comprehensively reviews artificial intelligence (AI) methods for macroscopic X-ray fluorescence (MA-XRF) data analysis of a religious panel painting (icon). ΜΑ-XRF is a powerful analytical imaging technique used to determine the elemental distribution maps of inhomogeneous targets. For the data analysis, we apply clustering algorithms such as k-means, factorization methods such as principal component analysis (PCA) and non-negative matrix factorization (NMF), and basic supervised machine learning methods, such as k-nearest neighbor (k-NN) regression and multilayer perceptron (MLP) regression. The applied AI methods allow for detailed and fast data analysis, providing two-dimensional elemental maps. The methods are beneficial for inexperienced users as they can analyze the MA-XRF data without detailed knowledge of the involved physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom: Int J 29(1):3–17

    Article  CAS  Google Scholar 

  2. Janssens K, Van der Snickt G, Vanmeert F, Legrand S, Nuyts G, Alfeld M, Monico L, Anaf W, De Nolf W, Vermeulen M, Verbeeck J, De Wael K (2016) Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-ray methods. Top Curr Chem 374(81). https://doi.org/10.1007/s41061-016-0079-2

  3. Romano FP, Caliri C, Nicotra P, Di Martino S, Pappalardo L, Rizzo F, Santos HC (2017) Real-time elemental imaging of large dimension paintings with a novel mobile macro X-ray fluorescence (MA-XRF) scanning technique. J Anal At Spectrom 32:773–781

    Article  CAS  Google Scholar 

  4. Alfeld M, Mösl K, Reiche I (2021) Sunset and moonshine: variable blue and yellow pigments used by Caspar David Friedrich in different creative periods revealed by in situ XRF imaging. X-Ray Spectrom 50(4):341–350

    Article  CAS  Google Scholar 

  5. Delaney JK, Dooley KA, Van Loon A, Vandivere A (2020) Mapping the pigment distribution of Vermeer’s Girl with a Pearl Earring. Herit Sci 8(1):1–16

    Article  Google Scholar 

  6. Saverwyns S, Currie C, Lamas-Delgado E (2018) Macro X-ray fluorescence scanning (MA-XRF) as tool in the authentication of paintings. Microchem J 137:139–147

    Article  CAS  Google Scholar 

  7. Shugar A (2021) Advancements in portable and lab based XRF instrumentation for analysis in cultural heritage: a change in perspective. Microsc Microanal 27(S1):2552–2553

    Article  Google Scholar 

  8. Xu BJ, Wu Y, Hao P, Vermeulen M, McGeachy A, Smith K, Walton M et al (2022) Can deep learning assist automatic identification of layered pigments from XRF data?. J Anal At Spectrom 37(12):2672–2682

    Google Scholar 

  9. Chopp H, McGeachy A, Alfeld M, Cossairt O, Walton M, Katsaggelos A (2022) Image processing perspectives of X-ray fluorescence data in cultural heritage sciences. IEEE BITS Inf Theory Mag 2(1):20–35

    Google Scholar 

  10. Kogou S, Lee L, Shahtahmassebi G, Liang H (2021) A new approach to the interpretation of XRF spectral imaging data using neural networks. X-Ray Spectrom 50(4):310–319

    Article  CAS  Google Scholar 

  11. Gerodimos T, Asvestas A, Mastrotheodoros GP, Chantas G, Liougos I, Likas A, Anagnostopoulos DF (2022) Scanning X-ray fluorescence data analysis for the identification of byzantine icons’ materials, techniques, and state of preservation: a case Study. J Imaging 8(5):147

    Article  Google Scholar 

  12. Alfeld M, Pedroso JV, van Eikema Hommes M, Van der Snickt G, Tauber G, Blaas J, Janssens K (2013) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28(5):760–767

    Article  CAS  Google Scholar 

  13. https://www.bruker.com/en/products-and-solutions/elemental-analyzers/micro-xrf-spectrometers/m6-jetstream.html

  14. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev: Comput Statis 2(4):433–459

    Article  Google Scholar 

  15. Łach B, Fiutowski T, Koperny S, Krupska-Wolas P, Lankosz M, Mendys-Frodyma A, Dąbrowski W et al (2021) Application of factorisation methods to analysis of elemental distribution maps acquired with a full-field XRF imaging spectrometer. Sensors 21(23):7965

    Google Scholar 

  16. Cichocki A, Phan AH (2009) Fast local algorithms for large-scale nonnegative matrix and tensor factorizations. IEICE Trans Fundam Electron Commun Comput Sci 92(3):708–721

    Article  Google Scholar 

  17. Alfeld M, Wahabzada M, Bauckhage C, Kersting K, Wellenreuther G, Falkenberg G (Apr 2014) Non-negative factor analysis supporting the interpretation of elemental distribution images acquired by XRF. In: Journal of physics: conference series, vol 499, no 1. IOP Publishing, p 012013

    Google Scholar 

  18. Magkanas G, Bagán H, Sistach MC, García JF (2021) Illuminated manuscript analysis methodology using MA-XRF and NMF: application on the Liber Feudorum Maior. Microchem J 165:106112

    Article  CAS  Google Scholar 

  19. Mihalić IB, Fazinić S, Barac M, Karydas AG, Migliori A, Doračić D, Krstić D et al (2021) Multivariate analysis of PIXE+XRF and PIXE spectral images. J Anal At Spectrom 36(3):654–667

    Google Scholar 

  20. Orsilli J, Galli A, Bonizzoni L, Caccia M (2021) More than XRF mapping: STEAM (Statistically Tailored Elemental Angle Mapper) a pioneering analysis protocol for pigment studies. Appl Sci 11:1446

    Article  CAS  Google Scholar 

  21. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  22. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

    Google Scholar 

  23. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Duchesnay E et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  24. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B: AtIc Spectrosc 62(1):63–68

    Article  Google Scholar 

  25. MacQueen J (1967) Classification and analysis of multivariate observations. In: 5th Berkeley symposium on mathematical statistics and probability, pp 281–297

    Google Scholar 

  26. Likas A, Vlassis N, Verbeek JJ (2003) The global k-means clustering algorithm. Pattern Recogn 36(2):451–461

    Article  Google Scholar 

  27. Mastrotheodoros GP, Beltsios KG, Bassiakos Y, Papadopoulou V (2016) On the grounds of post-byzantine Greek icons. Archaeometry 58(5):830–847

    Article  CAS  Google Scholar 

  28. Kühn H, Curran M (1986) Chrome yellow and other chromate pigments. In: Feller RL (ed)Artist’s pigments: a handbook of their history and characteristics. National Gallery of Art, Cambridge University Press: Cambridge, UK, pp 186–217

    Google Scholar 

  29. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by project “Dioni: Computing Infrastructure for Big-Data Processing and Analysis” (MIS No. 5047222) co-funded by European Union (ERDF) and Greece through Operational Program “Competitiveness, Entrepreneurship and Innovation”, NSRF 2014–2020.

Special thanks are due to M. Ziagkos for providing access to icon from private collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gerodimos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerodimos, T. et al. (2024). Artificial Intelligence Analysis of Macroscopic X-Ray Fluorescence Data: A Case Study of Nineteenth Century Icon. In: Osman, A., Moropoulou, A., Lampropoulos, K. (eds) Advanced Nondestructive and Structural Techniques for Diagnosis, Redesign and Health Monitoring for the Preservation of Cultural Heritage. TMM 2023. Springer Proceedings in Materials, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-42239-3_3

Download citation

Publish with us

Policies and ethics