Skip to main content

Deep Learning Meets Smart Agriculture: Using LSTM Networks to Handle Anomalous and Missing Sensor Data in the Compute Continuum

  • Chapter
  • First Online:
Device-Edge-Cloud Continuum

Part of the book series: Internet of Things ((ITTCC))

Abstract

In the era of the Internet of Things (IoT), conventional cloud-based solutions struggle to handle the huge amount, high velocity, and heterogeneity of data generated at the network edge. In this context, the edge-to-cloud compute continuum has emerged as an effective solution to reduce bandwidth consumption and latency in large-scale applications, through seamless integration of edge computing with cloud services and features. In this chapter, we show how the compute continuum can be effectively leveraged in the context of smart agriculture, with the aim of supporting greenhouse monitoring and management. We also analyze how long short-term memory (LSTM) neural networks can be integrated into the system to cope with the presence of missing and anomalous sensor data. A thorough experimental evaluation is performed to assess the LSTM performance, also showing how the application deployment at the compute continuum can ensure higher scalability in terms of bandwidth and latency, compared to a conventional cloud-based solution. Our findings show how the joint use of the compute continuum and deep learning can enable the development of a green-aware solution that fosters sustainable and efficient agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Barbieri, F. Marozzo, C. Savaglio, IoT platforms and services configuration through parameter sweep: a simulation-based approach, in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2021), pp. 1803–1808

    Google Scholar 

  2. L. Belcastro, R. Cantini, F. Marozzo, A. Orsino, D. Talia, P. Trunfio, Programming big data analysis: principles and solutions. J. Big Data 9(4), 1–50 (2022)

    Google Scholar 

  3. L. Belcastro, F. Marozzo, A. Orsino, D. Talia, P. Trunfio, Edge-cloud continuum solutions for urban mobility prediction and planning. IEEE Access 11, 38864–38874 (2023)

    Article  Google Scholar 

  4. S.K. Biswas, N. Sinha, B. Purkayastha, L. Marbaniang, Weather prediction by recurrent neural network dynamics. Int. J. Intell. Eng. Inf. 2(2–3), 166–180 (2014)

    Google Scholar 

  5. H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: a toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017)

    Article  Google Scholar 

  6. D. Ienco, R. Gaetano, C. Dupaquier, P. Maurel, Land cover classification via multitemporal spatial data by deep recurrent neural networks. IEEE Geosci. Remote Sens. Lett. 14(10), 1685–1689 (2017)

    Article  Google Scholar 

  7. M.R.M. Kassim, IoT applications in smart agriculture: issues and challenges, in 2020 IEEE Conference on Open Systems (ICOS) (IEEE, Piscataway, 2020), pp. 19–24

    Google Scholar 

  8. G. Kecskemeti, G. Casale, D.N. Jha, J. Lyon, R. Ranjan, Modelling and simulation challenges in internet of things. IEEE Cloud Comput. 4(1), 62–69 (2017)

    Article  Google Scholar 

  9. L.E. Lima, B.Y.L. Kimura, V. Rosset, Experimental environments for the internet of things: a review. IEEE Sens. J. 19(9), 3203–3211 (2019)

    Article  Google Scholar 

  10. H. Lu, X. Fu, C. Liu, L.g. Li, Y.x. He, N.w. Li, Cultivated land information extraction in uav imagery based on deep convolutional neural network and transfer learning. J. Mountain Sci. 14, 731–741 (2017)

    Google Scholar 

  11. Z. Lu, L. Chai, S. Liu, H. Cui, Y. Zhang, L. Jiang, R. Jin, Z. Xu, Estimating time series soil moisture by applying recurrent nonlinear autoregressive neural networks to passive microwave data over the Heihe River Basin, China. Remote Sens. 9(6), 574 (2017)

    Google Scholar 

  12. F. Marozzo, A. Orsino, D. Talia, P. Trunfio, Edge computing solutions for distributed machine learning, in 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (2022), pp. 1–8

    Google Scholar 

  13. D.H.T. Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana, F. Osman, P. Maurel, Deep recurrent neural networks for winter vegetation quality mapping via multitemporal sar sentinel-1. IEEE Geosci. Remote Sens. Lett. 15(3), 464–468 (2018)

    Article  Google Scholar 

  14. M. Rußwurm, M. Körner, Multi-temporal land cover classification with long short-term memory neural networks. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 42, 551–558 (2017)

    Article  Google Scholar 

  15. M. Sinqadu, Z.S. Shibeshi, Performance evaluation of a traffic surveillance application using iFogSim, in International Conference on Wireless Intelligent and Distributed Environment for Communication (Springer, Berlin, 2020), pp. 51–64

    Google Scholar 

  16. S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 1–11 (2016)

    Article  Google Scholar 

  17. C. Sobin, A survey on architecture, protocols and challenges in IoT. Wireless Pers. Commun. 112(3), 1383–1429 (2020)

    Article  Google Scholar 

  18. C. Sonmez, A. Ozgovde, C. Ersoy, EdgeCloudSim: an environment for performance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol. 29(11), e3493 (2018)

    Google Scholar 

  19. S. Taghavi Namin, M. Esmaeilzadeh, M. Najafi, T.B. Brown, J.O. Borevitz, Deep phenotyping: deep learning for temporal phenotype/genotype classification. Plant Methods 14(1), 1–14 (2018)

    Article  Google Scholar 

  20. H. Yalcin, Plant phenology recognition using deep learning: deep-pheno, in 2017 6th International Conference on Agro-Geoinformatics (IEEE, Piscataway, 2017), pp. 1–5

    Google Scholar 

  21. H. Yalcin, S. Razavi, Plant classification using convolutional neural networks, in 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (IEEE, Piscataway, 2016), pp. 1–5

    Google Scholar 

  22. X. Zeng, S.K. Garg, P. Strazdins, P.P. Jayaraman, D. Georgakopoulos, R. Ranjan, IOTSim: a simulator for analysing IoT applications. J. Syst. Archit. 72, 93–107 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the “FAIR – Future Artificial Intelligence Research” project – CUP H23C22000860006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Cantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantini, R., Marozzo, F., Orsino, A. (2024). Deep Learning Meets Smart Agriculture: Using LSTM Networks to Handle Anomalous and Missing Sensor Data in the Compute Continuum. In: Savaglio, C., Fortino, G., Zhou, M., Ma, J. (eds) Device-Edge-Cloud Continuum. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-42194-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42194-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42193-8

  • Online ISBN: 978-3-031-42194-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics