Skip to main content

Carbonate Chemistry of Water

  • Chapter
  • First Online:
An Introduction to Water Quality Science
  • 152 Accesses

Abstract

The most important systems of the ocean/river/aquatic bodies are the CO2-carbonate system because it has its buffering capacity to maintain the pH of aquatic bodies within a slim range. Moreover, the CO2-carbonate system of the hydrosphere is playing a major role to decrease anthropogenic CO2 from the atmosphere. Gaining knowledge of the CO2-carbonate system of the hydrosphere is very important nowadays. The chapter describes the carbon dynamics of the water system, dissolve organic and inorganic carbon measurement techniques, the air-water flux of carbon-di-oxide, chromophoric dissolved organic matter (CDOM), and its measurement protocol to achieve the above mention goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • APHA. (1992). Standard methods for the examination of water and wastewater (18th ed.). American Public Health Association (APHA), American Water Works Association (AWWA), and Water Pollution Control Federation (WPCF), Washington DC.

    Google Scholar 

  • Bolan, N. S., Baskaran, S., & Thiagarajan, S. (1996). An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Communications in Soil Science and Plant Analysis, 27, 2723–2737.

    Article  Google Scholar 

  • Boyd, P. W., Watson, A., Law, C. S., Abraham, E., Trull, T., Murdoch, R., Bakker, D. C. E., Bowie, A. R., Buesseler, K., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., La Roche, J., Liddicoat, M., Ling, R., Maldonado, M., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., & Zeldis, J. (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695–702.

    Article  Google Scholar 

  • Broecker, W. S., & Henderson, G. M. (1998). The sequence of events surrounding termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography, 13, 352–364.

    Article  Google Scholar 

  • Broecker, W. S., & Peng, T. H. (1982). Tracers in the sea (pp. 1–690). Eldigio Press.

    Google Scholar 

  • Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S., Chavez, F. P., et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.

    Article  Google Scholar 

  • Das, S., & Hazra, S. (2019). Vertical distribution of optically active substances (OAS) in the coastal sea off Indian Sundarban during post-monsoon. Marine Biology Research, 15(2), 163–169.

    Article  Google Scholar 

  • Das, S., Hazra, S., Lotlikar, A. A., Das, I., Giri, S., Chanda, A., et al. (2016). Delineating the relationship between chromophoric dissolved organic matter (CDOM) variability and biogeochemical parameters in a shallow continental shelf. The Egyptian Journal of Aquatic Research, 42(3), 241–248.

    Article  Google Scholar 

  • Das, S., Hazra, S., Giri, S., Das, I., Chanda, A., Akhand, A., & Maity, S. (2017a). Light absorption characteristics of chromophoric dissolved organic matter (CDOM) in the coastal waters of northern bay of Bengal during the winter season. Indian Journal of Geo-Marine Science, 46(5), 884–892.

    Google Scholar 

  • Das, S., Das, I., Giri, S., Chanda, A., Maity, S., Lotliker, A. A., et al. (2017b). Chromophoric dissolved organic matter (CDOM) variability over the continental shelf of the northern bay of Bengal. Oceanologia, 59(3), 271–282.

    Article  Google Scholar 

  • Doyle, A., Weintraub, M. N., & Schimel, J. P. (2004). Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Science Society of America Journal, 68, 669–676.

    Article  Google Scholar 

  • Falkowski, P. G., Barber, R. T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.

    Article  Google Scholar 

  • FAO and ITPS. (2015). Status of the World’s soil resources, .

    Google Scholar 

  • Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., & Théate, J.-M. (1998). Carbon dioxide emission from European estuaries. Science, 282, 434–436.

    Article  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

    Google Scholar 

  • Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., et al. (2022). Global carbon budget. Earth System Science Data, 14(11), 4811–4900. https://doi.org/10.5194/essd-14-4811-2022

    Article  Google Scholar 

  • Fujii, R. (1998). Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California: Implications for drinking-water quality (Vol. 98, No. 4147). US Department of the Interior, US Geological Survey.

    Google Scholar 

  • GCP (Global Carbon Project). (2022).

    Google Scholar 

  • Gruber, N., & Sarmiento, J. L. (1997). Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles, 11, 235–266.

    Article  Google Scholar 

  • Hansell, D. A., & Feely, R. A. (2000). Atmospheric intertropical convergence impact surface ocean carbon and nitrogen biogeochemistry in the western tropical Pacific. Geophysical Research Letters, 27, 1013–1016.

    Article  Google Scholar 

  • Holford, J., Johnson, K. M., Schneider, B., Siedler, G., & Wallace, D. W. R. (1998). Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean. Global Biogeochemical Cycles, 12, 479–499.

    Article  Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., & Coté, O. R. (1972). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98, 563–589.

    Article  Google Scholar 

  • Kane, D. (2015) Carbon sequestration potential on agricultural lands: A review of current science and available practices. In National sustainable agriculture coalition breakthrough strategies and solutions, LLC (pp. 1–35).

    Google Scholar 

  • Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., & Hebel, D. (1997). The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature, 388, 533–538.

    Article  Google Scholar 

  • Kolka, R. K., Grigal, D. F., Verry, E. S., & Nater, E. A. (1999). Mercury and organic carbon relationships in streams draining forested upland peatland watersheds. Journal of Environmental Quality, 28, 766775.

    Article  Google Scholar 

  • Kolka, R. K., Singer, J. H., Coppock, C. R., Casey, W. P., & Trettin, C. C. (2000). Influence of restoration and succession on bottomland hardwood hydrology. Ecological Engineering, 15, 131–140.

    Article  Google Scholar 

  • Mann, C. J., & Wetzel, R. G. (2000). Hydrology of an impounded lotic wetland – Subsurface hydrology. Wetlands, 20, 3347.

    Google Scholar 

  • Meybeck, M. (1993). Riverine transport of atmospheric carbon – Sources, global typology, and budget. Water, Air and Soil Pollution, 70, 443–463.

    Article  Google Scholar 

  • Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean – Budget of a non-steady state. Global Biogeochemical Cycles, 7, 927–957.

    Article  Google Scholar 

  • Oncley, S. P., Delany, A. C., Horst, T. W., & Tans, P. P. (1993). Verification of flux measurement using relaxed eddy accumulation. Atmospheric Environment. Part A. General Topics, 27(15), 2417–2426.

    Article  Google Scholar 

  • Pandi, S. R., Chari, N. V. H. K., Sarma, N. S., Tripathy, S. C., Chiranjeevulu, G., & Das, S. (2021). A review of estuarine CDOM dynamics of East Coast of India influenced by hydrographical forcing. In S. Das & T. Ghosh (Eds.), Estuarine biogeochemical dynamics of the East Coast of India. Springer. https://doi.org/10.1007/978-3-030-68980-3_14

    Chapter  Google Scholar 

  • Schlitzer, R. (2002). Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9–10), 1623–1644.

    Article  Google Scholar 

  • Schlünz, B. S. R. R., & Schneider, R. R. (2000). Transport of terrestrial organic carbon to the oceans by rivers: Re-estimating flux-and burial rates. International Journal of Earth Sciences, 88, 599–606.

    Article  Google Scholar 

  • Smith, S. V., & Hollibaugh, J. T. (1993). Coastal metabolism and the oceanic organic-carbon balance. Reviews of Geophysics, 31, 75–89.

    Article  Google Scholar 

  • Sorensen, L. L., & Larsen, S. E. (2010). Atmosphere–surface fluxes of CO2 using spectral techniques. Boundary-Layer Meteorol., 136, 59–81.

    Article  Google Scholar 

  • Takahashi, T., Goddard, J., Sutherland, S., Chipman, D. W., & Breeze, C. C. (1986). Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochemical Cycles, 7(4), 843–878.

    Article  Google Scholar 

  • Takahashi, T., Wanninkhof, R. H., Feely, R. A., Weiss, R. F., Chipman, D. W., Bates, N., Olafson, J., Sabine, C., & Sutherland, S. C. (1999). Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference. In: Proceedings of the 2nd international symposium CO2 in the oceans, center for global environmental research. National Institute for Environmental Studies, Tsukuba, Japan, pp. 9–15.

    Google Scholar 

  • Yamanaka, Y., & Tajika, E. (1996). The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochemical Cycles, 10, 361–382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. (2023). Carbonate Chemistry of Water. In: An Introduction to Water Quality Science. Springer, Cham. https://doi.org/10.1007/978-3-031-42137-2_5

Download citation

Publish with us

Policies and ethics