Skip to main content

Beyond FO Within SO

  • Chapter
  • First Online:
Logic: Reference Book for Computer Scientists

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 245))

  • 112 Accesses

Abstract

In Sects. 3.19 and 3.20, we discussed problems of expressive power of FO. The general formulation of the problem for FO was: given a class F of closed formulae and a class \(\mathcal {M}\) of FO structures, determine properties which can be expressed by formulae in F within structures in \(\mathcal {M}\). We discussed the problem EVEN and the problem CONN of connectivity for finite graphs showing that these problems cannot be expressed within FO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fund. Math. 49, 129–141 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hanf, W.: Model-theoretic methods in the study of elementary logic. In: Addison, J.W., Henkin, L., Tarski, A. (eds.) The Theory of Models. North-Holland, Amsterdam (1965)

    MATH  Google Scholar 

  3. Kolaitis, P.G.: On the expressive power of logics on finite models. In: Grädel, E. et al. (eds.) Finite Model Theory and its Applications, pp. 27–124. Springer, Berlin (2007)

    Google Scholar 

  4. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Gaifman, H.: On local and non-local properties. In: Proceedings of the Herbrand Symposium, Logic Colloquium’81. North-Holland (1982)

    Google Scholar 

  6. Fraïssé, R.: Sur quelques classifications des syst\(\grave{e}\)mes des relations. Univ. d’Alger Publ. Sci. A 1, 35–182 (1954)

    Google Scholar 

  7. Fagin, R., Stockmeyer, L., Vardi, M.Y.: On monadic NP vs monadic co-NP. Inf. Comput. 120, 78–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fagin, R.: Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 121–134 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ajtai, M., Fagin, R.: Reachability is harder for directed than for undirected graphs. J. Symb. Log. 55, 113–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Immerman, N.: Descriptive Complexity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Arora, S., Fagin, R.: On Winning Strategies in Ehrenfeucht-Frai’sse Games. Theoret. Comp. Sci. 174(1–2), 97–121 (1997)

    Article  MATH  Google Scholar 

  12. Büchi, R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ladner, R.E.: Application of model theoretic games to discrete linear orders and finite automata. Inf. Control 33, 281–303 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)

    Google Scholar 

  15. Trakhtenbrot, B.A.: The impossibility of an algorithm for the decision problem in finite models. Doklady AN SSSR 70, 569–572 (1950). (Eng. transl.: Amer. Math. Soc. Translations, Series 2(23), 1–5 (1963)

    Google Scholar 

  16. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R., (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)

    Google Scholar 

  17. Moschovakis, Y.N.: Descriptive Set Theory. AMS (2009)

    Google Scholar 

  18. Chandra, A., Harel, D.: Structure and complexity of relational queries. In: 21st IEEE Symposium on Foundations of Computer Science, pp. 333–347 (1980)

    Google Scholar 

  19. Immerman, N.: Relational queries computable in polynomial time. Inf. Control 68, 86–104 (1986); (first version in: 14thACM STOC Symposium, pp 147–152 (1982)

    Google Scholar 

  20. Vardi, M.Y.: Complexity of relational query languages. In: 14th Symposium on Theory o/Computation, pp. 137–146 (1982)

    Google Scholar 

  21. Gurevich., Y, Shelah., S.: Fixed-point extensions of first-order logic. Ann. Pure Appl. Logic 32, 265–280 (1986)

    Google Scholar 

  22. Kreutzer, S.: Expressive equivalence of least and inflationary fixed point logics. In: I": Proceedings of the 17th IEEE Symposium on Logic in Computer Science LICS02, pp. 403–410 (2002)

    Google Scholar 

  23. Immerman, N., Lander, E.: Describing graphs: a first order approach to graph canonization. In: Complexity Theory Retrospective. Springer, Berlin (1990)

    Google Scholar 

  24. Mostowski, A.: On a generalization of quantifiers. Fundam. Math. 44(1), 12–36 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  25. Etessami, K.: Counting quantifiers, successor relations and logarithmic space. J. Comput. Syst. Sci. 54, 400–411 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Libkin, L.: Elements of Finite Models Theory. Springer, Berlin (2012)

    Google Scholar 

  27. Libkin, L.: On counting logics and local properties. ACM Trans. Comput. Log. 1, 33–59 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hella, L.: Logical hierarchies in PTIME. Inf. Comput. 129, 1–19 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16, 760–778 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Immerman, N.: Lower bounds for first order expressibility. J. Comput. Syst. Sci. 25, 76–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Poizat, B.: Deux or trois choses que je sais de \(L_n\). J. Symb. Logic 47, 641–658 (1982)

    Article  MATH  Google Scholar 

  32. Barwise, J.: On Moschovakis closure ordinals. J. Symb. Logic 42, 292–296 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kolaitis, P., Vardi, Y.M.: Fixpoint logic vs. infinitary logic in finite-model theory. In: IEEE Symposium on Logic in Computer Science, pp. 146–57 (1992)

    Google Scholar 

  34. Libkin, L.: Logics capturing local properties. ACM Trans. Comput. Log. 2, 135–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Glebskii, Y.V., Kogan, D.I., Liogonki, M.I., Talanov, V.A.: Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics 5, 142–154 (1969)

    Article  Google Scholar 

  36. Fagin, R.: Probabilities on finite models. J. Symb. Logic 41(1), 17–21 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gaifman, H.: Concerning measures in first-order functional calculi. Israel J. Math. 2, 1–17 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  38. Łoś, J.: On the categoricity in power of elementary deductive systems and some related problems. Colloq. Math. 3, 58–62 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  39. Erdös, P., Rényi, A.: On the evolution of random graphs. Matematikai Kutató Intézet Közleményei 5, 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  40. Radó, R.: Universal graphs and universal functions. Acta Arith 9, 331–340 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grädel, E.: Finite model theory and descriptive complexity. In: Grädel, E., et al. (eds.) Finite Model Theory and Its Applications, pp. 125–230. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  42. Emerson, A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science, pp. 368–377 (1991)

    Google Scholar 

  43. Mostowski, A.W.: Games with forbidden positions. Technical Report 78, Gdansk University (1991)

    Google Scholar 

  44. Dahlhaus, E.: Skolem normal forms concerning the least fixed point. In: Börger,E. (ed.). Computation Theory and Logic. LNCS, vol. 270, pp. 101–106. Springer, Berlin (1987)

    Google Scholar 

  45. Kozen, D.: Results on the propositional mu-calculus. Theoret. Comp. Sci. 27, 333–354 (1983)

    Article  MATH  Google Scholar 

  46. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, 293–332. Elsevier, Amsterdam (2001)

    Google Scholar 

  47. Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In: Clarke, E.M., Henzinger, T., A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking, pp. 871–920. Springer Intl. Publishing AG (2018)

    Google Scholar 

  48. Streett, R.S., Emerson, E.A.: An automata-theoretic decision procedure for the propositional mu-calculus. Inform. Comput. 81, 249–264 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lech T. Polkowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polkowski, L.T. (2023). Beyond FO Within SO. In: Logic: Reference Book for Computer Scientists. Intelligent Systems Reference Library, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-031-42034-4_8

Download citation

Publish with us

Policies and ethics