Skip to main content

Mechanisms of Photostimulation of Brain’s Waste Disposal System: The Role of Singlet Oxygen

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XLIV (ISOTT 2022)

Abstract

There is strong evidence that augmentation of the brain’s waste disposal system via stimulation of the meningeal lymphatics might be a promising therapeutic target for preventing neurological diseases. In our previous studies, we demonstrated activation of the brain’s waste disposal system using transcranial photostimulation (PS) with a laser 1267 nm, which stimulates the direct generation of singlet oxygen in the brain tissues. Here we investigate the mechanisms underlying this phenomenon. Our results clearly demonstrate that PS-mediated stimulation of the brain’s waste disposal system is accompanied by activation of lymphatic contractility associated with subsequent intracellular production of the reactive oxygen species and the nitric oxide underlying lymphatic relaxation. Thus, PS stimulates the brain’s waste disposal system by influencing the mechanisms of regulation of lymphatic pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hershenhouse KS, Shauly O, Gould DJ et al (2019) Meningeal lymphatics: a review and future directions from a clinical perspective. Neurosci Insights 14:1179069519889027

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salehpour F, Khademi M, Bragin D (2022) Photobiomodulation therapy and the Glymphatic system: promising applications for augmenting the brain lymphatic drainage system. Int J Mol Sci 23:2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Semyachkina-Glushkovskaya O, Abdurashitov A, Dubrovsky A et al (2020) Photobiomodulation of lymphatic drainage and clearance: perspective strategy for augmentation of meningeal lymphatic functions. Biomed Opt Express 11(2):725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Semyachkina-Glushkovskaya O, Penzel T, Blokhina I et al (2021) Night Photostimulation of clearance of beta-amyloid from mouse brain: new strategies in preventing Alzheimer’s disease. Cell 10(12):3289

    Article  CAS  Google Scholar 

  6. Semyachkina-Glushkovskaya O, Fedosov I, Shirokov A et al (2021) Photomodulation of lymphatic delivery of liposomes to the brain bypassing the blood-brain barrier: new perspectives for glioma therapy. Nanophoton 10(12):3215–3227

    Article  CAS  Google Scholar 

  7. Henderson TA, Morries L (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 21(11):2191–2208

    Article  Google Scholar 

  8. Ribera J, Pauta M, Melgar-Lesmes P et al (2013) Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats. Gut 62:138–145

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Xue Q, Tang Q et al (2013) A simple method for isolating and culturing the rat brain microvascular endothelial cells. Microvasc Res 90:199–205

    Article  CAS  PubMed  Google Scholar 

  10. Ahn J, Cho H, Kim J et al (2019) Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572:62–66

    Article  CAS  PubMed  Google Scholar 

  11. Bohlen H, Gasheva O, Zawieja D (2011) Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. Am J Physiol Heart Circ Physiol 301:H1897–H1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kunert C, Baish JW, Liao S, Padera TP, Munn LL (2015) Mechanobiological oscillators control lymph flow. Proc Natl Acad Sci U S A 112:10938–10943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khokhlova A, Zolotovskii I, Sokolovski S et al (2019) The light-oxygen effect in biological cells enhanced by highly localized surface plasmon-polaritons. Sci Rep 9(1):18435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

O.S-G., A.Sh., A.T., A.D., I.F., A.K., I.B., A.E., D.E., V.A., V.T., I.A., V.A., J.K. were supported by RF Governmental Grant № 075-15-2022-1094, Grant from RSF № 21-75-10088, D.B. was supported by NIH 1R01NS112808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Bragin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Semyachkina-Glushkovskaya, O. et al. (2023). Mechanisms of Photostimulation of Brain’s Waste Disposal System: The Role of Singlet Oxygen. In: Scholkmann, F., LaManna, J., Wolf, U. (eds) Oxygen Transport to Tissue XLIV. ISOTT 2022. Advances in Experimental Medicine and Biology, vol 1438. Springer, Cham. https://doi.org/10.1007/978-3-031-42003-0_8

Download citation

Publish with us

Policies and ethics