Abstract
Islet transplantation is a promising treatment for type 1 diabetes (T1D), but limited islet engraftment hampers its success. In vivo, islets require time to remodel the hepatic parenchyma and establish their own microenvironment, but they face challenges such as ischemic reperfusion injury and immune reactions that hinder engraftment process. Bioengineering approaches are emerging as a solution to overcome these limitations. Specifically, ex vivo engineering of the islet niche microenvironment prior to implantation is gaining interest. These approaches aim to address challenges faced during isolation and in vivo engraftment, including the avascular phase, extracellular matrix (ECM) interactions, and mechanical/inflammatory stress. Alternative cell sources and native/synthetic materials are used to reshape the niche architecture, maximizing the cell-to-scaffold ratio. Meticulous design of the endocrine microenvironment, considering the endocrine, vasculature, and ECM compartments, has shown promise in improving engraftment and function. The generation of an endocrine vascularized pancreas platform enables ex vivo assembly of the essential building blocks, facilitating connection between the endocrine and vascular compartments. This approach has the potential to prevent inflammation, promote rapid vascularization, and enhance graft function. Here, we will discuss the up-to-date approaches in bioengineering the vascularized endocrine tissues based on reshaping all endocrine niche building blocks: ECM, vascular and endocrine compartments that are critical for successful assembly of an efficient vascularized endocrine insulin-producing tissue.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chetboun, M. et al. Association between primary graft function and 5-year outcomes of islet allogeneic transplantation in type 1 diabetes: a retrospective, multicentre, observational cohort study in 1210 patients from the Collaborative Islet Transplant Registry. Lancet Diabetes Endocrinol. (2023). doi:https://doi.org/10.1016/S2213-8587(23)00082-7
Pignatelli, C., Campo, F., Neroni, A., Piemonti, L. & Citro, A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl. Int. 35, (2022).
Almaça, J., Caicedo, A. & Landsman, L. Beta cell dysfunction in diabetes: the islet microenvironment as an unusual suspect. Diabetologia 63, 2076–2085 (2020).
Citro, A., Cantarelli, E. & Piemonti, L. Anti-inflammatory strategies to enhance islet engraftment and survival. Curr. Diab. Rep. 13, 733–744 (2013).
Wang, M., Crager, M. & Pugazhenthi, S. Modulation of apoptosis pathways by oxidative stress and autophagy in cells. Exp. Diabetes Res. 2012, (2012).
Jansson, L. & Carlsson, P. O. Graft vascular function after transplantation of pancreatic islets. Diabetologia 45, 749–763 (2002).
Keshtkar, S. et al. Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis. Sci. Rep. 9, 1–13 (2019).
Citro, A. & Ott, H. C. Can We Re-Engineer the Endocrine Pancreas? Current Diabetes Reports 18, (2018).
Piemonti, L., Guidotti, L. G. & Battaglia, M. Modulation of early inflammatory reactions to promote engraftment and function of transplanted pancreatic islets in autoimmune diabetes. Adv. Exp. Med. Biol. 654, 725–747 (2010).
Melzi, R. et al. Role of CCL2/MCP-1 in islet transplantation. Cell Transplant. 19, 1031–1046 (2010).
Piemonti, L. et al. Human pancreatic islets produce and secrete MCP-1/CCL2: Relevance in human islet transplantation. Diabetes 51, 55–65 (2002).
Nano, R. et al. Human pancreatic islet preparations release HMGB1: (Ir)relevance for graft engraftment. Cell Transplant. 22, 2175–2186 (2013).
Dugnani, E. & Citro, A. Filling the gap to improve islet engraftment and survival using anti-inflammatory approaches. in Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas: Volume 1 741–750 (Academic Press, 2019). doi:https://doi.org/10.1016/B978-0-12-814833-4.00059-9
Citro, A., Cantarelli, E., Pellegrini, S., Dugnani, E. & Piemonti, L. Anti-Inflammatory Strategies in Intrahepatic Islet Transplantation: A Comparative Study in Preclinical Models. Transplantation 102, 240–248 (2018).
Citro, A. et al. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse. Am. J. Transplant. 19, 3131–3138 (2019).
Maffi, P. et al. Targeting CXCR1/2 does not improve insulin secretion after pancreatic islet transplantation: A phase 3, double-blind, randomized, placebo-controlled trial in type 1 diabetes. Diabetes Care 43, 710–718 (2020).
Brissova, M. et al. Islet Microenvironment, Modulated by Vascular Endothelial Growth Factor-A Signaling, Promotes β Cell Regeneration, Cell Metab. 19, 498–511 (2014).
Delaune, V., Berney, T., Lacotte, S. & Toso, C. Intraportal islet transplantation: the impact of the liver microenvironment. Transpl. Int. 30, 227–238 (2017).
Bluestone, J. A. & Tang, Q. Solving the Puzzle of Immune Tolerance for β-Cell Replacement Therapy for Type 1 Diabetes. Cell Stem Cell 27, 505–507 (2020).
Berney, T., Andres, A., Toso, C., Majno, P. & Squifflet, J. P. mTOR Inhibition & Clinical Transplantation: Pancreas & Islet. Transplantation 102, S30–S31 (2017).
Samojlik, M. M. & Stabler, C. L. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomaterialia 133, 87–101 (2021).
Pepper, A. R., Bruni, A. & Shapiro, A. M. J. Clinical islet transplantation: Is the future finally now? Current Opinion in Organ Transplantation 23, 428–439 (2018).
Shapiro, A. M. J. et al. Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen. N. Engl. J. Med. 343, 230–238 (2000).
Shapiro, A. M. J. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).
Brandhorst, D., Brandhorst, H., Acreman, S., Abraham, A. & Johnson, P. R. V. High concentrations of etanercept reduce human islet function and integrity. J. Inflamm. Res. 14, 599–610 (2021).
Marfil-Garza, B. A., Shapiro, A. M. J. & Kin, T. Clinical islet transplantation: Current progress and new frontiers. J. Hepatobiliary. Pancreat. Sci. 28, 243–254 (2021).
Shapiro, A. M. J., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017).
de Vos, P., Faas, M. M., Strand, B. & Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006).
Citro, A. et al. Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat. Commun. 14, 878 (2023).
Citro, A. et al. Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials 199, 40–51 (2019).
Wassmer, C.-H. et al. Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes. Transpl. Int. 35, 7 (2022).
Stendahl, J. C., Kaufman, D. B. & Stupp, S. I. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant. 18, 1–12 (2009).
Cross, S. E. et al. Key Matrix Proteins Within the Pancreatic Islet Basement Membrane Are Differentially Digested During Human Islet Isolation. Am. J. Transplant. 17, 451–461 (2017).
Llacua, L. A., Faas, M. M. & de Vos, P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 61, 1261–1272 (2018).
Weber, L. M., Hayda, K. N., Haskins, K. & Anseth, K. S. The effects of cell-matrix interactions on encapsulated β-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 28, 3004–3011 (2007).
Aamodt, K. I. & Powers, A. C. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes, Obesity and Metabolism 19, 124–136 (2017).
Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nature Reviews Drug Discovery 16, 338–350 (2017).
Hunckler, M. D. & García, A. J. Engineered Biomaterials for Enhanced Function of Insulin-Secreting β-Cell Organoids. Adv. Funct. Mater. 30, 1–15 (2020).
Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).
Devaraj, N. K. & Finn, M. G. Introduction: Click Chemistry. Chem. Rev. 121, 6697–6698 (2021).
Wang, X. et al. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. Adv. Sci. 8, 1–19 (2021).
Henry, R. R. et al. Initial Clinical Evaluation of VC-01TM Combination Product—A Stem Cell–Derived Islet Replacement for Type 1 Diabetes (T1D). Diabetes 67, 138-OR (2018).
Paez-Mayorga, J. et al. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat. Commun. 13, 7951 (2022).
Liang, J. P. et al. Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater. 130, 268–280 (2021).
An, D. et al. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials 37, 40–48 (2015).
An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl. Acad. Sci. U. S. A. 115, E263–E272 (2017).
Guyette, J. P. et al. Perfusion decellularization of whole organs. 9, 1451–1468 (2014).
Ott, H. C. et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).
Song, J. J. et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19, 646–651 (2013).
Ott, H. C. et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 927–933 (2010).
Peloso, A. et al. The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Ann. Surg. 264, 169–179 (2016).
Napierala, H. et al. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci. Rep. 7, 1–12 (2017).
Sayed-Hadi Mirmalek-Sani, Orlando, G. et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. 34, 5488–5495 (2014).
Vishwakarma, S. K. et al. Molecular dynamics of pancreatic transcription factors in bioengineered humanized insulin producing neoorgan. Gene 675, 165–175 (2018).
Wang, X., Wang, K., Zhang, W., Qiang, M. & Luo, Y. A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice. Biomaterials 138, 80–90 (2017).
Willenberg, B. J. et al. Repurposed biological scaffolds: Kidney to pancreas. Organogenesis 11, 47–57 (2015).
Goh, S. K., Bertera, S., Richardson, T. & Banerjee, I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed. Mater. 18, (2023).
Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 49, 1–15 (2017).
Jiang, K. et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198, 37–48 (2019).
Sackett, S. D. et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 8, 1–16 (2018).
Tremmel, D. M. et al. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci. Rep. 12, 7188 (2022).
Salg, G. A. et al. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. Journal of Tissue Engineering 10, (2019).
Hussein, K. H. et al. New insights into the pros and cons of cross-linking decellularized bioartificial organs. International Journal of Artificial Organs 40, 136–141 (2017).
Li, X., Sun, Q., Li, Q., Kawazoe, N. & Chen, G. Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications . Frontiers in Chemistry 6, (2018).
Bishop, E. S. et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 4, 185–195 (2017).
Kang, H. W., Kengla, C., Lee, S. J., Yoo, J. J. & Atala, A. 3-D organ printing technologies for tissue engineering applications. Rapid Prototyp. Biomater. Princ. Appl. 236–253 (2014). doi:https://doi.org/10.1533/9780857097217.236
Espona-Noguera, A. et al. Review of advanced hydrogel-based cell encapsulation systems for insulin delivery in type 1 diabetes mellitus. Pharmaceutics 11, (2019).
Gurlin, R. E., Giraldo, J. A. & Latres, E. 3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. Tissue Eng. - Part B Rev. 27, 238–252 (2021).
Hwang, D. G. et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication 14, (2021).
Kim, J. et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J. Mater. Chem. B 7, 1773–1781 (2019).
Ghasemi, A., Akbari, E. & Imani, R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front. Bioeng. Biotechnol. 9, 686 (2021).
Li, W. et al. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47, 5646–5683 (2018).
Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).
Ding, S., Serra, C. A., Vandamme, T. F., Yu, W. & Anton, N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J. Control. Release 295, 31–49 (2019).
Wang, J. et al. Droplet Microfluidics for the Production of Microparticles and Nanoparticles. Micromachines 8, (2017).
Harrington, S., Ott, L., Karanu, F., Ramachandran, K. & Stehno-Bittel, L. A versatile microencapsulation platform for hyaluronic acid and polyethylene glycol. Tissue Eng. - Part A 27, 153–164 (2021).
Harrington, S., Karanu, F., Ramachandran, K., Williams, S. J. & Stehno-Bittel, L. PEGDA microencapsulated allogeneic islets reverse canine diabetes without immunosuppression. PLoS One 17, 1–20 (2022).
Skoumal, M. et al. Localized immune tolerance from FasL-functionalized PLG scaffolds. 271–281 (2020). doi:https://doi.org/10.1016/j.biomaterials.2018.11.015.Localized
Herman Blomeier, Xiaomin Zhang, Christopher Rives, Marcela Brissova, Elizabeth Hughes, Marshall Baker, Alvin C. Powers4 Dixon B. Kaufman, Lonnie D. Shea, and W. L. L. J. Polymer Scaffolds as Synthetic Microenvironments for Extrahepatic Islet Transplantation. Bone 23, 1–7 (2008).
Salvay, D. M. et al. Extracellular Matrix Protein-Coated Scaffolds Promote the Reversal of Diabetes After Extrahepatic Islet Transplantation. Transplantation 85, 1456–1464 (2008).
Zhang, M. et al. Study on the Effect of PDA-PLGA Scaffold Loaded With Islet Cells for Skeletal Muscle Transplantation in the Treatment of Diabetes. Front. Bioeng. Biotechnol. 10, 1–12 (2022).
Rosiak, P., Latanska, I., Paul, P., Sujka, W. & Kolesinska, B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 26, (2021).
Hu, S. et al. Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials 266, (2021).
Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).
Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).
Komatsu, H., Kandeel, F. & Mullen, Y. Impact of Oxygen on Pancreatic Islet Survival. Pancreas 47, 533–543 (2018).
Pedraza, E., Coronel, M. M., Fraker, C. A., Ricordi, C. & Stabler, C. L. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl. Acad. Sci. U. S. A. 109, 4245–4250 (2012).
Barkai, U. et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant. 22, 1463–1476 (2013).
An, D. et al. An Atmosphere-Breathing Refillable Biphasic Device for Cell Replacement Therapy. Adv. Mater. 31, 1–8 (2019).
Chen, Y., Nguyen, D. T., Kokil, G. R., Wong, Y. X. & Dang, T. T. Microencapsulated islet-like microtissues with toroid geometry for enhanced cellular viability. Acta Biomater. 97, 260–271 (2019).
An, D. et al. Mass production of shaped particles through vortex ring freezing. Nat. Commun. 7, 1–10 (2016).
Fotino, N., Fotino, C. & Pileggi, A. Re-engineering islet cell transplantation. Pharmacological Research 98, 76–85 (2015).
Qin, T. et al. Inclusion of extracellular matrix molecules and necrostatin-1 in the intracapsular environment of alginate-based microcapsules synergistically protects pancreatic β cells against cytokine-induced inflammatory stress. Acta Biomater. 146, 434–449 (2022).
Krol, S., Baronti, W. & Marchetti, P. Nanoencapsulated human pancreatic islets for β-cell replacement in Type 1 diabetes. Nanomedicine (London, England) 15, 1735–1738 (2020).
Youn, W. et al. Single-Cell Nanoencapsulation: From Passive to Active Shells. Adv. Mater. 32, 1907001 (2020).
Manzoli, V. et al. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 18, 590–603 (2018).
Stabler, C. L. et al. Transplantation of PEGylated islets enhances therapeutic efficacy in a diabetic nonhuman primate model. Am. J. Transplant. 20, 689–700 (2020).
Syed, F. et al. Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: In-vitro and in-vivo studies. Nanomedicine Nanotechnology, Biol. Med. 14, 2191–2203 (2018).
De Toni, T. et al. Parallel Evaluation of Polyethylene Glycol Conformal Coating and Alginate Microencapsulation as Immunoisolation Strategies for Pancreatic Islet Transplantation. Front. Bioeng. Biotechnol. 10, 1–16 (2022).
Atala, A., Kasper, F. K. & Mikos, A. G. Engineering complex tissues. Sci. Transl. Med. 4, 160rv12 (2012).
Said, S. S., Pickering, J. G. & Mequanint, K. Advances in growth factor delivery for therapeutic angiogenesis. J. Vasc. Res. 50, 35–51 (2013).
Wang, K., Lin, R. Z. & Melero-Martin, J. M. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cell. Mol. Life Sci. 76, 421–439 (2019).
Gimbrone, M. A. J., Cotran, R. S. & Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60, 673–684 (1974).
Black, A. F., Berthod, F., L’heureux, N., Germain, L. & Auger, F. A. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 12, 1331–1340 (1998).
Schechner, J. S. et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl. Acad. Sci. U. S. A. 97, 9191–9196 (2000).
Song, W. et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10, 4602 (2019).
Wassmer, C.-H. et al. Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes. Transpl. Int. 0, 7 (2022).
Davison, P. M., Bensch, K. & Karasek, M. A. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J. Invest. Dermatol. 75, 316–321 (1980).
Kern, P. A., Knedler, A. & Eckel, R. H. Isolation and culture of microvascular endothelium from human adipose tissue. J. Clin. Invest. 71, 1822–1829 (1983).
Nör, J. E. et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab. Invest. 81, 453–463 (2001).
Lin, Y., Weisdorf, D. J., Solovey, A. & Hebbel, R. P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77 (2000).
Medina, R. J. et al. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl. Med. 6, 1316–1320 (2017).
Yoder, M. C. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801–1809 (2007).
Au, P. et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111, 1302–1305 (2008).
Wu, X. et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287, H480–7 (2004).
Melero-Martin, J. M. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109, 4761–4768 (2007).
Sieminski, A. L., Hebbel, R. P. & Gooch, K. J. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. Tissue Eng. 11, 1332–1345 (2005).
Ren, X. et al. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat. Biotechnol. 33, (2015).
Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).
Kang, K.-T., Allen, P. & Bischoff, J. Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re-establish perfusion. Blood 118, 6718–6721 (2011).
Bellofatto, K., Lebreton, F., Hanna, R., Fonseca, L. M., Bignard, J., Galvan, V., Peloso, A., Berney, Thierry., Compagnon, P., VANGUARD Consortium; Berishvili, E. 228.1: Hydrogel-based, prevascularized, retrievable endocrine construct to treat Type 1 Diabetes. Transplantation 107(10S2):p 57 (2023). https://doi.org/10.1097/01.tp.0000994048.59940.dd
Coppens, V. et al. Human blood outgrowth endothelial cells improve islet survival and function when co-transplanted in a mouse model of diabetes. Diabetologia 56, 382–390 (2013).
Hoshi, R. A. et al. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 34, 30–41 (2013).
Olgasi, C. et al. Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Mol. Ther. Methods Clin. Dev. 23, 551–566 (2021).
Ingram, D. A. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752–2760 (2004).
Mund, J. A., Estes, M. L., Yoder, M. C., Ingram, D. A. J. & Case, J. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler. Thromb. Vasc. Biol. 32, 1045–1053 (2012).
Rignault-Clerc, S. et al. Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients. Burns 39, 694–704 (2013).
Dudek, A. Z. et al. Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br. J. Cancer 97, 513–522 (2007).
Shradhanjali, A. et al. Characterization of Blood Outgrowth Endothelial Cells (BOEC) from Porcine Peripheral Blood. J. Vis. Exp. 2022, 1–14 (2022).
Park, I.-H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).
Rufaihah, A. J. et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 31, e72–9 (2011).
Samuel, R. et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 12774–12779 (2013).
Wu, S. M. & Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat. Cell Biol. 13, 497–505 (2011).
Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D. & Penninger, J. M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082–3100 (2019).
Stevens, K. R. & Murry, C. E. Human Pluripotent Stem Cell-Derived Engineered Tissues: Clinical Considerations. Cell Stem Cell 22, 294–297 (2018).
Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204–219 (2013).
Lebreton, F. et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am. J. Transplant. 20, 1551–1561 (2020).
Takahashi, Y., Sekine, K., Kin, T., Takebe, T. & Taniguchi, H. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation. Cell Rep. 23, 1620–1629 (2018).
Matsushima, H. et al. Human Fibroblast Sheet Promotes Human Pancreatic Islet Survival and Function In Vitro. Cell Transpl. 25, 1525–1537 (2016).
Barsby, T. et al. Differentiating functional human islet-like aggregates from pluripotent stem cells. STAR Protoc 3, 101711 (2022).
Liu, Z. et al. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transpl. 26, 925–947 (2017).
Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4, 22 (2019).
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell 27, 523–531 (2020).
D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24, 1392–1401 (2006).
Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).
Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).
Volarevic, V. et al. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci 15, 36–45 (2018).
Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).
Millman, J. R. et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, (2016).
Liu, H. et al. Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional beta cells. Nat Commun 12, 3330 (2021).
Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol 40, 1042–1055 (2022).
Pellegrini, S. et al. Treating iPSC-Derived beta Cells with an Anti-CD30 Antibody-Drug Conjugate Eliminates the Risk of Teratoma Development upon Transplantation. Int J Mol Sci 23, (2022).
Vizzardelli, C. et al. Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV. Xenotransplantation 9, 14–24 (2002).
Ellis, C., Lyon, J. G. & Korbutt, G. S. Optimization and Scale-up Isolation and Culture of Neonatal Porcine Islets: Potential for Clinical Application. Cell Transpl. 25, 539–547 (2016).
Nagaraju, S., Bottino, R., Wijkstrom, M., Trucco, M. & Cooper, D. K. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 22, 7–19 (2015).
Kim, J. M. et al. Long-term porcine islet graft survival in diabetic non-human primates treated with clinically available immunosuppressants. Xenotransplantation 28, e12659 (2021).
Matsumoto, S. et al. Long-term follow-up for the microbiological safety of clinical microencapsulated neonatal porcine islet transplantation. Xenotransplantation 27, e12631 (2020).
Calvin Kagan Muhammad Haq, Muhammad Mohiuddin, Susie N Hong-Zohlman, Manjula Ananthram, Charles C Hong, Vincent Y See, Stephen Shorofsky, Bartley Griffith and Timm Dickfeld, R. S. A. Abstract 12072: EKG Appearance and Evolution of Baseline EKG-Characteristics in the Worldwide First Genetically Modified Porcine-to-Human Xenotransplant (“Pig Heart-in-Human Body”). Circulation (2022).
Porrett, P. M. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transpl. 22, 1037–1053 (2022).
Acknowledgments
FC and AN have contributed to the writing of the work in partial fulfillment of the requirements for obtaining the PhD degree at Vita-Salute San Raffaele University, Milano, Italy. CP has contributed to the writing and reviewing the manuscript. JB and EB have contributed to the writing of the manuscript. LP and AC have written and reviewed the manuscript and supervised the work. This work was supported by grants from the European Commission (Horizon 2020 Framework Program; VANGUARD grant 874700); Juvenile Diabetes Research Foundation (JDRF; grant 3-SRA-2022-1155-S-B); Fondazione Italiana Diabete (FID); “SOStegno 70 Insieme ai ragazzi diabetici Associazione Onlus” (project “Beta is better”), and fundraising campaign “Un brutto t1po”.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Campo, F. et al. (2023). Bioengineered Vascularized Insulin Producing Endocrine Tissues. In: Piemonti, L., Odorico, J., Kieffer, T.J..., Sordi, V., de Koning, E. (eds) Pluripotent Stem Cell Therapy for Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-031-41943-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-41943-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41942-3
Online ISBN: 978-3-031-41943-0
eBook Packages: MedicineMedicine (R0)