Skip to main content

Bioengineered Vascularized Insulin Producing Endocrine Tissues

  • Chapter
  • First Online:
Pluripotent Stem Cell Therapy for Diabetes

Abstract

Islet transplantation is a promising treatment for type 1 diabetes (T1D), but limited islet engraftment hampers its success. In vivo, islets require time to remodel the hepatic parenchyma and establish their own microenvironment, but they face challenges such as ischemic reperfusion injury and immune reactions that hinder engraftment process. Bioengineering approaches are emerging as a solution to overcome these limitations. Specifically, ex vivo engineering of the islet niche microenvironment prior to implantation is gaining interest. These approaches aim to address challenges faced during isolation and in vivo engraftment, including the avascular phase, extracellular matrix (ECM) interactions, and mechanical/inflammatory stress. Alternative cell sources and native/synthetic materials are used to reshape the niche architecture, maximizing the cell-to-scaffold ratio. Meticulous design of the endocrine microenvironment, considering the endocrine, vasculature, and ECM compartments, has shown promise in improving engraftment and function. The generation of an endocrine vascularized pancreas platform enables ex vivo assembly of the essential building blocks, facilitating connection between the endocrine and vascular compartments. This approach has the potential to prevent inflammation, promote rapid vascularization, and enhance graft function. Here, we will discuss the up-to-date approaches in bioengineering the vascularized endocrine tissues based on reshaping all endocrine niche building blocks: ECM, vascular and endocrine compartments that are critical for successful assembly of an efficient vascularized endocrine insulin-producing tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chetboun, M. et al. Association between primary graft function and 5-year outcomes of islet allogeneic transplantation in type 1 diabetes: a retrospective, multicentre, observational cohort study in 1210 patients from the Collaborative Islet Transplant Registry. Lancet Diabetes Endocrinol. (2023). doi:https://doi.org/10.1016/S2213-8587(23)00082-7

  2. Pignatelli, C., Campo, F., Neroni, A., Piemonti, L. & Citro, A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl. Int. 35, (2022).

    Google Scholar 

  3. Almaça, J., Caicedo, A. & Landsman, L. Beta cell dysfunction in diabetes: the islet microenvironment as an unusual suspect. Diabetologia 63, 2076–2085 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Citro, A., Cantarelli, E. & Piemonti, L. Anti-inflammatory strategies to enhance islet engraftment and survival. Curr. Diab. Rep. 13, 733–744 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Wang, M., Crager, M. & Pugazhenthi, S. Modulation of apoptosis pathways by oxidative stress and autophagy in cells. Exp. Diabetes Res. 2012, (2012).

    Google Scholar 

  6. Jansson, L. & Carlsson, P. O. Graft vascular function after transplantation of pancreatic islets. Diabetologia 45, 749–763 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Keshtkar, S. et al. Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis. Sci. Rep. 9, 1–13 (2019).

    Article  CAS  Google Scholar 

  8. Citro, A. & Ott, H. C. Can We Re-Engineer the Endocrine Pancreas? Current Diabetes Reports 18, (2018).

    Google Scholar 

  9. Piemonti, L., Guidotti, L. G. & Battaglia, M. Modulation of early inflammatory reactions to promote engraftment and function of transplanted pancreatic islets in autoimmune diabetes. Adv. Exp. Med. Biol. 654, 725–747 (2010).

    Article  PubMed  Google Scholar 

  10. Melzi, R. et al. Role of CCL2/MCP-1 in islet transplantation. Cell Transplant. 19, 1031–1046 (2010).

    Article  PubMed  Google Scholar 

  11. Piemonti, L. et al. Human pancreatic islets produce and secrete MCP-1/CCL2: Relevance in human islet transplantation. Diabetes 51, 55–65 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Nano, R. et al. Human pancreatic islet preparations release HMGB1: (Ir)relevance for graft engraftment. Cell Transplant. 22, 2175–2186 (2013).

    Article  PubMed  Google Scholar 

  13. Dugnani, E. & Citro, A. Filling the gap to improve islet engraftment and survival using anti-inflammatory approaches. in Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas: Volume 1 741–750 (Academic Press, 2019). doi:https://doi.org/10.1016/B978-0-12-814833-4.00059-9

  14. Citro, A., Cantarelli, E., Pellegrini, S., Dugnani, E. & Piemonti, L. Anti-Inflammatory Strategies in Intrahepatic Islet Transplantation: A Comparative Study in Preclinical Models. Transplantation 102, 240–248 (2018).

    Article  PubMed  CAS  Google Scholar 

  15. Citro, A. et al. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse. Am. J. Transplant. 19, 3131–3138 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Maffi, P. et al. Targeting CXCR1/2 does not improve insulin secretion after pancreatic islet transplantation: A phase 3, double-blind, randomized, placebo-controlled trial in type 1 diabetes. Diabetes Care 43, 710–718 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Brissova, M. et al. Islet Microenvironment, Modulated by Vascular Endothelial Growth Factor-A Signaling, Promotes β Cell Regeneration, Cell Metab. 19, 498–511 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Delaune, V., Berney, T., Lacotte, S. & Toso, C. Intraportal islet transplantation: the impact of the liver microenvironment. Transpl. Int. 30, 227–238 (2017).

    Article  PubMed  Google Scholar 

  19. Bluestone, J. A. & Tang, Q. Solving the Puzzle of Immune Tolerance for β-Cell Replacement Therapy for Type 1 Diabetes. Cell Stem Cell 27, 505–507 (2020).

    Article  PubMed  CAS  Google Scholar 

  20. Berney, T., Andres, A., Toso, C., Majno, P. & Squifflet, J. P. mTOR Inhibition & Clinical Transplantation: Pancreas & Islet. Transplantation 102, S30–S31 (2017).

    Article  Google Scholar 

  21. Samojlik, M. M. & Stabler, C. L. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomaterialia 133, 87–101 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pepper, A. R., Bruni, A. & Shapiro, A. M. J. Clinical islet transplantation: Is the future finally now? Current Opinion in Organ Transplantation 23, 428–439 (2018).

    Article  PubMed  Google Scholar 

  23. Shapiro, A. M. J. et al. Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Shapiro, A. M. J. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. Brandhorst, D., Brandhorst, H., Acreman, S., Abraham, A. & Johnson, P. R. V. High concentrations of etanercept reduce human islet function and integrity. J. Inflamm. Res. 14, 599–610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marfil-Garza, B. A., Shapiro, A. M. J. & Kin, T. Clinical islet transplantation: Current progress and new frontiers. J. Hepatobiliary. Pancreat. Sci. 28, 243–254 (2021).

    Article  PubMed  Google Scholar 

  27. Shapiro, A. M. J., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017).

    Article  PubMed  CAS  Google Scholar 

  28. de Vos, P., Faas, M. M., Strand, B. & Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006).

    Article  PubMed  Google Scholar 

  29. Citro, A. et al. Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat. Commun. 14, 878 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Citro, A. et al. Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials 199, 40–51 (2019).

    Article  PubMed  CAS  Google Scholar 

  31. Wassmer, C.-H. et al. Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes. Transpl. Int. 35, 7 (2022).

    Article  Google Scholar 

  32. Stendahl, J. C., Kaufman, D. B. & Stupp, S. I. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant. 18, 1–12 (2009).

    Article  PubMed  Google Scholar 

  33. Cross, S. E. et al. Key Matrix Proteins Within the Pancreatic Islet Basement Membrane Are Differentially Digested During Human Islet Isolation. Am. J. Transplant. 17, 451–461 (2017).

    Article  PubMed  CAS  Google Scholar 

  34. Llacua, L. A., Faas, M. M. & de Vos, P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 61, 1261–1272 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Weber, L. M., Hayda, K. N., Haskins, K. & Anseth, K. S. The effects of cell-matrix interactions on encapsulated β-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 28, 3004–3011 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Aamodt, K. I. & Powers, A. C. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes, Obesity and Metabolism 19, 124–136 (2017).

    Article  PubMed  CAS  Google Scholar 

  37. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nature Reviews Drug Discovery 16, 338–350 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. Hunckler, M. D. & García, A. J. Engineered Biomaterials for Enhanced Function of Insulin-Secreting β-Cell Organoids. Adv. Funct. Mater. 30, 1–15 (2020).

    Article  Google Scholar 

  39. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Devaraj, N. K. & Finn, M. G. Introduction: Click Chemistry. Chem. Rev. 121, 6697–6698 (2021).

    Article  PubMed  CAS  Google Scholar 

  41. Wang, X. et al. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. Adv. Sci. 8, 1–19 (2021).

    Google Scholar 

  42. Henry, R. R. et al. Initial Clinical Evaluation of VC-01TM Combination Product—A Stem Cell–Derived Islet Replacement for Type 1 Diabetes (T1D). Diabetes 67, 138-OR (2018).

    Google Scholar 

  43. Paez-Mayorga, J. et al. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat. Commun. 13, 7951 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liang, J. P. et al. Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater. 130, 268–280 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. An, D. et al. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials 37, 40–48 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl. Acad. Sci. U. S. A. 115, E263–E272 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Guyette, J. P. et al. Perfusion decellularization of whole organs. 9, 1451–1468 (2014).

    CAS  Google Scholar 

  48. Ott, H. C. et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    Article  PubMed  CAS  Google Scholar 

  49. Song, J. J. et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19, 646–651 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ott, H. C. et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 927–933 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Peloso, A. et al. The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Ann. Surg. 264, 169–179 (2016).

    Article  PubMed  Google Scholar 

  52. Napierala, H. et al. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci. Rep. 7, 1–12 (2017).

    Article  Google Scholar 

  53. Sayed-Hadi Mirmalek-Sani, Orlando, G. et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. 34, 5488–5495 (2014).

    Google Scholar 

  54. Vishwakarma, S. K. et al. Molecular dynamics of pancreatic transcription factors in bioengineered humanized insulin producing neoorgan. Gene 675, 165–175 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Wang, X., Wang, K., Zhang, W., Qiang, M. & Luo, Y. A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice. Biomaterials 138, 80–90 (2017).

    Article  PubMed  CAS  Google Scholar 

  56. Willenberg, B. J. et al. Repurposed biological scaffolds: Kidney to pancreas. Organogenesis 11, 47–57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Goh, S. K., Bertera, S., Richardson, T. & Banerjee, I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed. Mater. 18, (2023).

    Google Scholar 

  58. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 49, 1–15 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Jiang, K. et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198, 37–48 (2019).

    Article  PubMed  CAS  Google Scholar 

  60. Sackett, S. D. et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 8, 1–16 (2018).

    Article  CAS  Google Scholar 

  61. Tremmel, D. M. et al. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci. Rep. 12, 7188 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Salg, G. A. et al. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. Journal of Tissue Engineering 10, (2019).

    Google Scholar 

  63. Hussein, K. H. et al. New insights into the pros and cons of cross-linking decellularized bioartificial organs. International Journal of Artificial Organs 40, 136–141 (2017).

    Article  PubMed  Google Scholar 

  64. Li, X., Sun, Q., Li, Q., Kawazoe, N. & Chen, G. Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications . Frontiers in Chemistry 6, (2018).

    Google Scholar 

  65. Bishop, E. S. et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 4, 185–195 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kang, H. W., Kengla, C., Lee, S. J., Yoo, J. J. & Atala, A. 3-D organ printing technologies for tissue engineering applications. Rapid Prototyp. Biomater. Princ. Appl. 236–253 (2014). doi:https://doi.org/10.1533/9780857097217.236

  67. Espona-Noguera, A. et al. Review of advanced hydrogel-based cell encapsulation systems for insulin delivery in type 1 diabetes mellitus. Pharmaceutics 11, (2019).

    Google Scholar 

  68. Gurlin, R. E., Giraldo, J. A. & Latres, E. 3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. Tissue Eng. - Part B Rev. 27, 238–252 (2021).

    Article  PubMed  CAS  Google Scholar 

  69. Hwang, D. G. et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication 14, (2021).

    Google Scholar 

  70. Kim, J. et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J. Mater. Chem. B 7, 1773–1781 (2019).

    Article  PubMed  CAS  Google Scholar 

  71. Ghasemi, A., Akbari, E. & Imani, R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front. Bioeng. Biotechnol. 9, 686 (2021).

    Article  Google Scholar 

  72. Li, W. et al. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47, 5646–5683 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).

    Article  PubMed  CAS  Google Scholar 

  74. Ding, S., Serra, C. A., Vandamme, T. F., Yu, W. & Anton, N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J. Control. Release 295, 31–49 (2019).

    Article  PubMed  CAS  Google Scholar 

  75. Wang, J. et al. Droplet Microfluidics for the Production of Microparticles and Nanoparticles. Micromachines 8, (2017).

    Google Scholar 

  76. Harrington, S., Ott, L., Karanu, F., Ramachandran, K. & Stehno-Bittel, L. A versatile microencapsulation platform for hyaluronic acid and polyethylene glycol. Tissue Eng. - Part A 27, 153–164 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Harrington, S., Karanu, F., Ramachandran, K., Williams, S. J. & Stehno-Bittel, L. PEGDA microencapsulated allogeneic islets reverse canine diabetes without immunosuppression. PLoS One 17, 1–20 (2022).

    Article  Google Scholar 

  78. Skoumal, M. et al. Localized immune tolerance from FasL-functionalized PLG scaffolds. 271–281 (2020). doi:https://doi.org/10.1016/j.biomaterials.2018.11.015.Localized

  79. Herman Blomeier, Xiaomin Zhang, Christopher Rives, Marcela Brissova, Elizabeth Hughes, Marshall Baker, Alvin C. Powers4 Dixon B. Kaufman, Lonnie D. Shea, and W. L. L. J. Polymer Scaffolds as Synthetic Microenvironments for Extrahepatic Islet Transplantation. Bone 23, 1–7 (2008).

    Google Scholar 

  80. Salvay, D. M. et al. Extracellular Matrix Protein-Coated Scaffolds Promote the Reversal of Diabetes After Extrahepatic Islet Transplantation. Transplantation 85, 1456–1464 (2008).

    Google Scholar 

  81. Zhang, M. et al. Study on the Effect of PDA-PLGA Scaffold Loaded With Islet Cells for Skeletal Muscle Transplantation in the Treatment of Diabetes. Front. Bioeng. Biotechnol. 10, 1–12 (2022).

    Google Scholar 

  82. Rosiak, P., Latanska, I., Paul, P., Sujka, W. & Kolesinska, B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 26, (2021).

    Google Scholar 

  83. Hu, S. et al. Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials 266, (2021).

    Google Scholar 

  84. Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Komatsu, H., Kandeel, F. & Mullen, Y. Impact of Oxygen on Pancreatic Islet Survival. Pancreas 47, 533–543 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pedraza, E., Coronel, M. M., Fraker, C. A., Ricordi, C. & Stabler, C. L. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl. Acad. Sci. U. S. A. 109, 4245–4250 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Barkai, U. et al. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant. 22, 1463–1476 (2013).

    Article  PubMed  Google Scholar 

  89. An, D. et al. An Atmosphere-Breathing Refillable Biphasic Device for Cell Replacement Therapy. Adv. Mater. 31, 1–8 (2019).

    Article  CAS  Google Scholar 

  90. Chen, Y., Nguyen, D. T., Kokil, G. R., Wong, Y. X. & Dang, T. T. Microencapsulated islet-like microtissues with toroid geometry for enhanced cellular viability. Acta Biomater. 97, 260–271 (2019).

    Article  PubMed  Google Scholar 

  91. An, D. et al. Mass production of shaped particles through vortex ring freezing. Nat. Commun. 7, 1–10 (2016).

    Article  Google Scholar 

  92. Fotino, N., Fotino, C. & Pileggi, A. Re-engineering islet cell transplantation. Pharmacological Research 98, 76–85 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Qin, T. et al. Inclusion of extracellular matrix molecules and necrostatin-1 in the intracapsular environment of alginate-based microcapsules synergistically protects pancreatic β cells against cytokine-induced inflammatory stress. Acta Biomater. 146, 434–449 (2022).

    Article  PubMed  CAS  Google Scholar 

  94. Krol, S., Baronti, W. & Marchetti, P. Nanoencapsulated human pancreatic islets for β-cell replacement in Type 1 diabetes. Nanomedicine (London, England) 15, 1735–1738 (2020).

    Article  PubMed  CAS  Google Scholar 

  95. Youn, W. et al. Single-Cell Nanoencapsulation: From Passive to Active Shells. Adv. Mater. 32, 1907001 (2020).

    Article  CAS  Google Scholar 

  96. Manzoli, V. et al. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 18, 590–603 (2018).

    Article  CAS  Google Scholar 

  97. Stabler, C. L. et al. Transplantation of PEGylated islets enhances therapeutic efficacy in a diabetic nonhuman primate model. Am. J. Transplant. 20, 689–700 (2020).

    Article  PubMed  CAS  Google Scholar 

  98. Syed, F. et al. Conformal coating by multilayer nano-encapsulation for the protection of human pancreatic islets: In-vitro and in-vivo studies. Nanomedicine Nanotechnology, Biol. Med. 14, 2191–2203 (2018).

    CAS  Google Scholar 

  99. De Toni, T. et al. Parallel Evaluation of Polyethylene Glycol Conformal Coating and Alginate Microencapsulation as Immunoisolation Strategies for Pancreatic Islet Transplantation. Front. Bioeng. Biotechnol. 10, 1–16 (2022).

    Google Scholar 

  100. Atala, A., Kasper, F. K. & Mikos, A. G. Engineering complex tissues. Sci. Transl. Med. 4, 160rv12 (2012).

    Article  PubMed  Google Scholar 

  101. Said, S. S., Pickering, J. G. & Mequanint, K. Advances in growth factor delivery for therapeutic angiogenesis. J. Vasc. Res. 50, 35–51 (2013).

    Article  PubMed  CAS  Google Scholar 

  102. Wang, K., Lin, R. Z. & Melero-Martin, J. M. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cell. Mol. Life Sci. 76, 421–439 (2019).

    Article  PubMed  CAS  Google Scholar 

  103. Gimbrone, M. A. J., Cotran, R. S. & Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60, 673–684 (1974).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Black, A. F., Berthod, F., L’heureux, N., Germain, L. & Auger, F. A. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 12, 1331–1340 (1998).

    CAS  Google Scholar 

  105. Schechner, J. S. et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl. Acad. Sci. U. S. A. 97, 9191–9196 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Song, W. et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10, 4602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wassmer, C.-H. et al. Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes. Transpl. Int. 0, 7 (2022).

    Google Scholar 

  108. Davison, P. M., Bensch, K. & Karasek, M. A. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J. Invest. Dermatol. 75, 316–321 (1980).

    Article  PubMed  CAS  Google Scholar 

  109. Kern, P. A., Knedler, A. & Eckel, R. H. Isolation and culture of microvascular endothelium from human adipose tissue. J. Clin. Invest. 71, 1822–1829 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Nör, J. E. et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab. Invest. 81, 453–463 (2001).

    Article  PubMed  Google Scholar 

  111. Lin, Y., Weisdorf, D. J., Solovey, A. & Hebbel, R. P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Medina, R. J. et al. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl. Med. 6, 1316–1320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yoder, M. C. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801–1809 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Au, P. et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111, 1302–1305 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wu, X. et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287, H480–7 (2004).

    Article  PubMed  CAS  Google Scholar 

  116. Melero-Martin, J. M. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109, 4761–4768 (2007).

    Article  PubMed  CAS  Google Scholar 

  117. Sieminski, A. L., Hebbel, R. P. & Gooch, K. J. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. Tissue Eng. 11, 1332–1345 (2005).

    Article  PubMed  CAS  Google Scholar 

  118. Ren, X. et al. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat. Biotechnol. 33, (2015).

    Google Scholar 

  119. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  PubMed  CAS  Google Scholar 

  120. Kang, K.-T., Allen, P. & Bischoff, J. Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re-establish perfusion. Blood 118, 6718–6721 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bellofatto, K., Lebreton, F., Hanna, R., Fonseca, L. M., Bignard, J., Galvan, V., Peloso, A., Berney, Thierry., Compagnon, P., VANGUARD Consortium; Berishvili, E. 228.1: Hydrogel-based, prevascularized, retrievable endocrine construct to treat Type 1 Diabetes. Transplantation 107(10S2):p 57 (2023). https://doi.org/10.1097/01.tp.0000994048.59940.dd

  122. Coppens, V. et al. Human blood outgrowth endothelial cells improve islet survival and function when co-transplanted in a mouse model of diabetes. Diabetologia 56, 382–390 (2013).

    Article  PubMed  CAS  Google Scholar 

  123. Hoshi, R. A. et al. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 34, 30–41 (2013).

    Article  PubMed  CAS  Google Scholar 

  124. Olgasi, C. et al. Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Mol. Ther. Methods Clin. Dev. 23, 551–566 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ingram, D. A. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752–2760 (2004).

    Article  PubMed  CAS  Google Scholar 

  126. Mund, J. A., Estes, M. L., Yoder, M. C., Ingram, D. A. J. & Case, J. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler. Thromb. Vasc. Biol. 32, 1045–1053 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rignault-Clerc, S. et al. Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients. Burns 39, 694–704 (2013).

    Article  PubMed  Google Scholar 

  128. Dudek, A. Z. et al. Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br. J. Cancer 97, 513–522 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Shradhanjali, A. et al. Characterization of Blood Outgrowth Endothelial Cells (BOEC) from Porcine Peripheral Blood. J. Vis. Exp. 2022, 1–14 (2022).

    Google Scholar 

  130. Park, I.-H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  PubMed  CAS  Google Scholar 

  131. Rufaihah, A. J. et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 31, e72–9 (2011).

    Article  PubMed  CAS  Google Scholar 

  132. Samuel, R. et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 12774–12779 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Wu, S. M. & Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat. Cell Biol. 13, 497–505 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D. & Penninger, J. M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082–3100 (2019).

    Article  PubMed  CAS  Google Scholar 

  135. Stevens, K. R. & Murry, C. E. Human Pluripotent Stem Cell-Derived Engineered Tissues: Clinical Considerations. Cell Stem Cell 22, 294–297 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).

    Article  PubMed  CAS  Google Scholar 

  137. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  PubMed  CAS  Google Scholar 

  138. Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204–219 (2013).

    Article  PubMed  CAS  Google Scholar 

  139. Lebreton, F. et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am. J. Transplant. 20, 1551–1561 (2020).

    Article  PubMed  CAS  Google Scholar 

  140. Takahashi, Y., Sekine, K., Kin, T., Takebe, T. & Taniguchi, H. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation. Cell Rep. 23, 1620–1629 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Matsushima, H. et al. Human Fibroblast Sheet Promotes Human Pancreatic Islet Survival and Function In Vitro. Cell Transpl. 25, 1525–1537 (2016).

    Article  Google Scholar 

  142. Barsby, T. et al. Differentiating functional human islet-like aggregates from pluripotent stem cells. STAR Protoc 3, 101711 (2022).

    Google Scholar 

  143. Liu, Z. et al. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transpl. 26, 925–947 (2017).

    Article  Google Scholar 

  144. Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4, 22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  PubMed  CAS  Google Scholar 

  146. Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell 27, 523–531 (2020).

    Article  PubMed  CAS  Google Scholar 

  147. D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24, 1392–1401 (2006).

    Article  PubMed  Google Scholar 

  148. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    Article  PubMed  CAS  Google Scholar 

  149. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  PubMed  CAS  Google Scholar 

  150. Volarevic, V. et al. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci 15, 36–45 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Millman, J. R. et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, (2016).

    Google Scholar 

  153. Liu, H. et al. Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional beta cells. Nat Commun 12, 3330 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol 40, 1042–1055 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Pellegrini, S. et al. Treating iPSC-Derived beta Cells with an Anti-CD30 Antibody-Drug Conjugate Eliminates the Risk of Teratoma Development upon Transplantation. Int J Mol Sci 23, (2022).

    Google Scholar 

  156. Vizzardelli, C. et al. Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV. Xenotransplantation 9, 14–24 (2002).

    Article  PubMed  Google Scholar 

  157. Ellis, C., Lyon, J. G. & Korbutt, G. S. Optimization and Scale-up Isolation and Culture of Neonatal Porcine Islets: Potential for Clinical Application. Cell Transpl. 25, 539–547 (2016).

    Article  Google Scholar 

  158. Nagaraju, S., Bottino, R., Wijkstrom, M., Trucco, M. & Cooper, D. K. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 22, 7–19 (2015).

    Article  PubMed  Google Scholar 

  159. Kim, J. M. et al. Long-term porcine islet graft survival in diabetic non-human primates treated with clinically available immunosuppressants. Xenotransplantation 28, e12659 (2021).

    Google Scholar 

  160. Matsumoto, S. et al. Long-term follow-up for the microbiological safety of clinical microencapsulated neonatal porcine islet transplantation. Xenotransplantation 27, e12631 (2020).

    Google Scholar 

  161. Calvin Kagan Muhammad Haq, Muhammad Mohiuddin, Susie N Hong-Zohlman, Manjula Ananthram, Charles C Hong, Vincent Y See, Stephen Shorofsky, Bartley Griffith and Timm Dickfeld, R. S. A. Abstract 12072: EKG Appearance and Evolution of Baseline EKG-Characteristics in the Worldwide First Genetically Modified Porcine-to-Human Xenotransplant (“Pig Heart-in-Human Body”). Circulation (2022).

    Google Scholar 

  162. Porrett, P. M. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transpl. 22, 1037–1053 (2022).

    Article  Google Scholar 

Download references

Acknowledgments

FC and AN have contributed to the writing of the work in partial fulfillment of the requirements for obtaining the PhD degree at Vita-Salute San Raffaele University, Milano, Italy. CP has contributed to the writing and reviewing the manuscript. JB and EB have contributed to the writing of the manuscript. LP and AC have written and reviewed the manuscript and supervised the work. This work was supported by grants from the European Commission (Horizon 2020 Framework Program; VANGUARD grant 874700); Juvenile Diabetes Research Foundation (JDRF; grant 3-SRA-2022-1155-S-B); Fondazione Italiana Diabete (FID); “SOStegno 70 Insieme ai ragazzi diabetici Associazione Onlus” (project “Beta is better”), and fundraising campaign “Un brutto t1po”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ekaterine Berishvili , Lorenzo Piemonti or Antonio Citro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campo, F. et al. (2023). Bioengineered Vascularized Insulin Producing Endocrine Tissues. In: Piemonti, L., Odorico, J., Kieffer, T.J..., Sordi, V., de Koning, E. (eds) Pluripotent Stem Cell Therapy for Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-031-41943-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41943-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41942-3

  • Online ISBN: 978-3-031-41943-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics